Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Google DeepMind, Biyolojik Tahminlerin Kapsamını Genişleten AlphaFold 3'ü Yayınladı!

Google DeepMind, Biyolojik Tahminlerin Kapsamını Genişleten AlphaFold 3'ü Yayınladı! MIT Technology Review
3 dakika
312
Tüm Reklamları Kapat

Google DeepMind, biyoloji tahmin aracı AlphaFold'un sadece proteinlerin değil biyolojik yaşamın neredeyse tüm unsurlarının yapılarını tahmin edebilen geliştirilmiş bir versiyonunu yayınladı.

Bu gelişme, ilaç keşfini ve diğer bilimsel araştırmaları hızlandırabilir. Araç şu anda dayanıklı mahsullerden yeni aşılara kadar her şeyi tanımlamak için deneyler yapmak için kullanılıyor.

2020'de piyasaya sürülen bir önceki model, protein yapılarını tahmin etme kabiliyetiyle araştırma topluluğunu hayrete düşürse de araştırmacılar, aracın proteinlerden daha fazlasını ele almasını istiyordu.

Tüm Reklamları Kapat

DeepMind, şimdi AlphaFold 3'ün DNA, RNA ve ilaç keşfi için gerekli ligandlar gibi moleküllerin yapılarını tahmin edebildiğini belirtiyor. Ayrıca, aracın molekül etkileşimlerinin daha ince ve dinamik bir portresini sunduğu da ifade ediliyor. DeepMind CEO'su Demis Hassabis, şunları söylüyor:

Biyoloji dinamik bir sistemdir. Biyolojinin özellikleri, hücre içindeki farklı moleküller arasındaki etkileşimler yoluyla ortaya çıkar. AlphaFold 3'ü de bu etkileşimleri modelleme konusundaki ilk büyük adımımız olarak düşünebilirsiniz.

AlphaFold 2 insan kalbini daha iyi haritalamamıza, antimikrobiyal direnci modellememize ve nesli tükenmiş kuşların yumurtalarını tanımlamamıza yardımcı oldu ancak AlphaFold 3'ün ne gibi ilerlemeler getireceğini henüz bilmiyoruz.

Columbia Üniversitesi'nde sistem biyolojisi alanında yardımcı doçent olan Mohammed AlQuraishi, modelin yeni versiyonunun ilaç keşfi için daha da iyi olacağını düşünüyor: AlphaFold 2 sistemi sadece aminoasitleri biliyordu, bu yüzden biyofarma için çok sınırlı bir faydası vardı. Ama şimdi, sistem prensip olarak bir ilacın bir proteine nerede bağlandığını tahmin edebiliyor.

Tüm Reklamları Kapat

AlQuraishi bu sürümün ileriye doğru büyük bir adım olduğunu belirtse de bazı uyarıları da var:

Ancak çoğu modelde olduğu gibi, AlphaFold'un etkisi tahminlerinin ne kadar doğru olduğuna bağlı olacaktır. Bazı kullanımlar için AlphaFold 3’ün başarısı, RoseTTAFold gibi benzer önde gelen modellerin başarısının iki katı olsa da protein-RNA etkileşimleri gibi bazı alanlarda hala çok doğru değil.

DeepMind, modellenen etkileşime bağlı olarak doğruluğun %40 ile %80 arasında değişebileceğini ve modelin tahminine ne kadar güvendiğini araştırmacılara bildireceğini söylüyor. Daha az doğru tahminlerde, araştırmacılar AlphaFold'u yalnızca bir başlangıç noktası olarak kullanmak zorunda.

AlphaFold 3'ün daha büyük molekül kütüphanesi ve daha yüksek karmaşıklık seviyesi, temel model mimarisinde iyileştirmeler gerektirdi. Bu nedenle DeepMind, AI araştırmacılarının son yıllarda sürekli olarak geliştirdiği ve şimdi OpenAI’ın DALL-E 2 ve Sora gibi görüntü ve video oluşturucularını güçlendiren difüzyon tekniklerine yöneldi. Bu yöntem, bir modelin gürültülü bir görüntüyle başlayıp bu gürültüyü azaltarak doğru bir tahmin ortaya çıkarmasına olanak tanır. Bu yöntem, AlphaFold 3'ün çok daha büyük bir girdi setini ele alabilmesini sağladı.

Google DeepMind direktörü John Jumper, bunun "önceki modele göre büyük bir evrim" anlamına geldiğini, tüm bu farklı atomların süreci gerçekten basitleştirdiğini belirtiyor.

Evrim Ağacı'ndan Mesaj

Ancak aynı zamanda bu, yeni riskleri de beraberinde getiriyor. AlphaFold 3 makalesinde detaylandırıldığı gibi, difüzyon tekniklerinin kullanımı modelin halüsinasyon görmesini ya da makul görünen ancak gerçekte var olmayan yapılar üretmesini mümkün kıldı. Araştırmacılar, halüsinasyona en yatkın alanlara daha fazla eğitim verisi ekleyerek bu riski azalttılar, ancak sorun henüz tamamen ortadan kalkmadı.

AlphaFold 3'ün etkisinin bir kısmı, DeepMind'ın modele erişimi nasıl paylaştıracağına bağlı olacak. AlphaFold 2 için şirket, araştırmacıların nasıl çalıştığını daha iyi anlamalarını sağlamak için açık kaynak kodunu yayınlamıştı. Ayrıca, ilaç üreticileri tarafından ticari kullanım da dahildi. Ancak Hassabis, AlphaFold 3 için kodun tamamını yayınlamaya yönelik mevcut bir plan olmadığını söyledi. Şirket, bunun yerine model için AlphaFold Sunucusu adı verilen hangi moleküllerin denenebileceği ve yalnızca ticari olmayan amaçlarla kullanılabileceği konusunda sınırlamalar getiren halka açık bir arayüz sunuyor. DeepMind, arayüzün teknik engeli azaltacağını ve aracın kullanımını bu teknoloji hakkında daha az bilgisi olan biyologlara genişleteceğini söylüyor. AlQuraishi'ye göre yeni kısıtlamalar önem arz ediyor:

Sistemin ana satış noktası olan protein-küçük molekül etkileşimlerini tahmin etme yeteneği, temelde kamu kullanımı için sunulmadı. Bu noktada çoğunlukla bir fragmandan ibaret.
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
9
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

Feragatname: Evrim Ağacı, doğrudan üniversiteler, akademik dergiler veya resmi bilim kurumları tarafından yayınlanan bu basın açıklamalarını temel editöryal düzenlemeden geçirmektedir; ancak açıklamaların isabetliliğinden sorumlu değildir. Basın açıklaması konusundaki sorularınızı aşağıdaki medya irtibat kişisine yöneltebilirsiniz.

Medya İrtibat
  • James O'Donnell

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 2
  • Muhteşem! 1
  • Bilim Budur! 1
  • Mmm... Çok sapyoseksüel! 1
  • İnanılmaz 1
  • Umut Verici! 1
  • Merak Uyandırıcı! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 15/06/2024 10:45:35 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/17660

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Basınç
Goril
Çekirdek
Sağlık Örgütü
Ara Tür
Olumsuz
İyi
Epidemik
Özel Görelilik
Özellikler
Anatomi
Taklit
Deri
Sars-Cov-2 (Covid19 Koronavirüs Salgını)
Optik
Yaşam
Factchecking
Tarih
Entropi
Sinirbilim
Kuşlar
Analiz
Hukuk
Radyo
Entomoloji
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün bilimseverlerle ne paylaşmak istersin?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
U. Derin. Google DeepMind, Biyolojik Tahminlerin Kapsamını Genişleten AlphaFold 3'ü Yayınladı!. (21 Mayıs 2024). Alındığı Tarih: 15 Haziran 2024. Alındığı Yer: https://evrimagaci.org/s/17660
Derin, U. (2024, May 21). Google DeepMind, Biyolojik Tahminlerin Kapsamını Genişleten AlphaFold 3'ü Yayınladı!. Evrim Ağacı. Retrieved June 15, 2024. from https://evrimagaci.org/s/17660
U. Derin. “Google DeepMind, Biyolojik Tahminlerin Kapsamını Genişleten AlphaFold 3'ü Yayınladı!.” Edited by Ufuk Derin. Evrim Ağacı, 21 May. 2024, https://evrimagaci.org/s/17660.
Derin, Ufuk. “Google DeepMind, Biyolojik Tahminlerin Kapsamını Genişleten AlphaFold 3'ü Yayınladı!.” Edited by Ufuk Derin. Evrim Ağacı, May 21, 2024. https://evrimagaci.org/s/17660.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close