Paylaşım Yap
Tüm Reklamları Kapat

Ellingham Diyagramı Nedir? Kimyasal Tepkimelerin Termodinamik Özelliklerini Nasıl Öngörebiliriz?

13 dakika
6,036
Ellingham Diyagramı Nedir? Kimyasal Tepkimelerin Termodinamik Özelliklerini Nasıl Öngörebiliriz? ThoughtCo
Demirin paslanması istemli bir tepkimeyken bu süreç yıllar alabilir.
Tüm Reklamları Kapat

Ellingham diyagramları, bir bileşiğin stabilitesinin sıcaklığa olan bağımlılığını gösteren bir grafiktir. Bu analiz, metal oksit ve sülfitler gibi kimyasalların redükte edileiblme kolaylığını ölçmekte kullanılır. Ellingham diyagramının temel kullanım alanları metalürji endüstrisi, inorganik kimya ve fiziko kimyadır. Metalürji endüstrisinde metal madeninden saf metal elde etmekte kullanılır.

Ellingham diyagramları, ismini mucidi olan Harold Ellingham'dan almıştır. İlk kez 1944 yılında "Metalürjik Süreçlerde Oksit ve Sülfitlerin İndirgenebilirliği" (İng: "Reducibility of Oxides and Sulfides in Metallurgic Processes") adlı makalesinde bu diyagramlar tanıtılmıştır. Ellingham diyagramları, o zamandan bu yana diğer elementler için de genelleştirilmiştir. Oksit ve sülfitlerin yanında bromür, klorür, florür, iyodür, hidrit, nitrit, selenit ve tellüritler için de Ellingham diyagramları yapılmıştır.

Hepsinin temel mantığı aynı olduğu için biz bu yazımızda oksitler üzerinden gideceğiz; ancak aynı bilgiler diğer bileşikler için de uygulanabilir.

Tüm Reklamları Kapat

Gibbs Serbest Enerjisi ve Metal Oksitlerin Kararlılığı

Gibbs serbest enerjisi, bir tepkimenin kendiliğinden olma eğilimini ölçmemize yarayan bir büyüklüktür. Tepkimeye girenlerin Gibbs serbest enerjisi ve ürünlerin Gibbs serbest enerjisini kullanarak bir tepkimenin kendiliğinden mi olacağını yoksa dışarıdan müdahale mi gerektiğini bulabiliriz.

Gibbs serbest enerjisindeki değişim negatifse bu tepkime kendiliğinden yürür yani istemlidir. İstemli tepkimelerin en önemli özelliği oluşan ürünlerin termodinamik olarak girenlerden daha kararlı olmasıdır. Eğer Gibbs serbest enerjisindeki değişim pozitifse bu tepkimenin yürümesi için dışarıdan müdahale etmemiz gerekir, bunun sebebi de girenlerin termodinamik olarak ürünlerden daha kararlı olmasıdır. Eğer Gibbs serbest enerjisindeki değişim sıfıra eşit ise tepkime kimyasal olarak dengededir ve hem girenler hem ürünler sürekli oluşmaktadır. Bunu matematiksel olarak şöyle ifade edebiliriz:

ΔG=ΣΔGu¨ru¨nler−ΣΔGgirenler\mathrm{\Delta G = \Sigma \Delta G_{ürünler} - \Sigma \Delta G_{girenler}}

ΔG>0:\mathrm{\Delta G > 0}: İstemsiz tepkime

Tüm Reklamları Kapat

ΔG<0:\mathrm{\Delta G <0}: İstemli tepkime

ΔG=0:\mathrm{\Delta G = 0}: Kimyasal Denge

Gibbs serbest enerjisinin değeri tepkimenin yönüne bağlıdır. Tepkimenin yönü değiştiğinde büyüklüğü aynı kalmasına rağmen işareti değişir. Bir tepkime üzerinden örnek verelim:

N2(g)+3H2(g)⇆2NH3(g)ΔG=−32.96kJ\mathrm{N_2 (g) + 3H_2 (g) \leftrightarrows 2NH_3 (g) \hspace{20pt} \Delta G = -32.96 kJ}

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

2NH3(g)⇆N2(g)+3H2(g)ΔG=32.96kJ\mathrm{2 NH_3 (g) \leftrightarrows N_2(g) + 3 H_2(g) \hspace{20pt} \Delta G = 32.96 kJ}

Gibbs serbest enerji değişimlerine baktığımızda amonyak oluşum tepkimesi istemliyken ters yöndeki tepkime istemsizdir.

Ellingham Diyagramı Nedir ve Nasıl Okunur?

Ellingham diyagramı, Gibbs serbest enerji değerleri ve sıcaklık değerleri kullanılarak yapılır. Yatay eksende sıcaklık, dikey eksende Gibbs serbest enerji değerleri bulunur. Bazı Ellingham diyagramları ek bilgiler içerebilir ve bu bilgiler de çeşitli eksenlere kodlanmıştır. Biz bu yazımızda, ana eksenler olan Gibbs serbest enerjisi ve sıcaklığı inceleyeceğiz. Yazımızın ilerleyen kısımlarında diğer eksenlerden de bahsedeceğiz.

Diyagramın dikey ekseninde metal oksitlerin oluşum tepkimelerinin Gibbs serbest enerji değerleri bulunur. Bu tepkimeler istemli tepkimeler olduğu için hepsinin Gibbs serbest enerji değeri negatiftir, bundan dolayı dikey eksenin en üstünde sıfır bulunur ve aşağıya indikçe değerler daha da negatifleşir. Herhangi bir MM metali için aşağıdaki genel tepkime metal oksit oluşum tepkimesidir. Bu vereceğimiz örnekte aynı zamanda yazımızın geri kalanı için notasyonu belirleyeceğiz:

M(s)+nO(g)→MOn(s)ΔG=ΔG(M,MOn)\mathrm{M(s) + nO(g) \rightarrow MO_n (s) \hspace{20pt} \Delta G = \Delta G(M,MO_n)}

Seçtiğimiz notasyon bize tepkimenin yönü hakkında bilgi verir. Parantezin içerisindeki ilk sembol gireni, ikinci sembol ürünü temsil eder. Verilen tepkimenin tersini yazmak isteseydik ΔG(MOn,M)\mathrm{\Delta G(MO_n,M)} ifadesini kullanırdık. Bu notasyon hem giren ve ürün bilgisi hem de tepkimenin yönünü verdiği için çok pratiktir. Bu bilgilerle birlikte, artık ilk Ellingham diyagramımızla karşılaşmaya hazırız.

Tüm Reklamları Kapat

Oksitler için Ellingham diyagramı
Oksitler için Ellingham diyagramı
Wikimedia Commons

Tam bir sanat eseri, öyle değil mi? Bu ilk şoku atlattıysanız, devam edebiliriz. Negatif bir Gibbs serbest enerji değerinin kararlı bir yapıya denk geldiğini düşünürsek diyagrama ilk baktığımızda şu çıkarımı yapabiliriz: Diyagramda bir metal oksit ne kadar aşağıda bulunuyorsa o kadar kararlıdır. Metal oksitlerin kararlılığı hakkında bilgi sahibi olmak, tepkimelerin nasıl yürüyeceğine dair çıkarımlar yapmamızda yardımcı olur.

Diyagramı kullanarak bir somut bir örnek verelim: Magnezyum oksit (MgO\mathrm{MgO}), konum olarak her sıcaklık değer için titanyum oksitten (TiO2\mathrm{TiO_2}), aşağıda bulunmaktadır. Bu durumda magnezyum oksit, titanyum oksitten daha kararlı bir yapıdır. Bundan dolayı aşağıdaki tepkime her sıcaklıkta istemli şekilde yürür.

Mg(s)+TiO2(s)→MgO(s)+Ti(s)ΔG<0\mathrm{ Mg(s) + TiO_2(s) \rightarrow MgO(s) + Ti(s) \hspace{20pt} \Delta G < 0}

Tüm Reklamları Kapat

Diyagramdan elde edebileceğimiz bir başka bilgi ise, metallerin hal değiştireceği sıcaklık değerleridir. Eklediğimiz diyagramdaki MM harfi erime noktasını (İng: "melting point"), BB harfi kaynama noktasını (İng: "boiling point") temsil eder. Eğer sadece harf varsa saf metalin, eğer harfin etrafında kutu varsa metal oksitin sıcaklık değerlerini temsil eder. Örnek olarak titanyum için değerleri incelersek, saf titanyumun erime sıcaklığı diyagramda yaklaşık 1600oC değerlerindeyken, titanyum oksitin erime sıcaklığı yaklaşık 1800oC değerlerindedir. Tam değerlerine baktığımızda titanyum için 1668oC, titanyum oksit için 1843oC değerini görürüz. Ellingham diyagramı çok kısa sürede yaklaşık değerler bulmamıza yardımcı olduğu için bu konuda da kimyagerler için faydalıdır.

Karbon Tepkimeleri ve Metalürjik Uygulamalar

Şu ana kadar termodinamik ve kimyasal yorumlar yaptık. Şimdi Ellingham diyagramının en önemli kullanım alanından bahsedeceğiz: Pirometalürji.

Pirometalürji, ısıl işlemler kullanılarak kıymetli metalleri elde etmekle uğraşan metalürji dalıdır. Şu ana kadar öğrendiğimiz bilgiler ışığında pirometalürji ve Ellingham diyagramının bağlantısını rahatça kurabiliriz. Ellingham diyagramı, bilgileri sıcaklık üzerinden vermekte ve pirometalürji ısıl işlemler kullanmaktadır. Metalürjik uygulamaları anlamak için, tekrar yukarıdaki Ellingham diyagramına bakalım. Metal çizgilerinden ayrı duran üç renkli çizgi vardır. Bunlar aşağıdaki tepkimelere denk gelir:

  • Siyah Çizgi: 2CO(g)+O2(g)→2CO2(g)ΔG(CO,CO2)\mathrm{ 2CO(g) + O_2(g) \rightarrow 2CO_2(g) \hspace{20pt} \Delta G(CO,CO_2)}.
  • Bu tepkimenin çizgisi sıcaklık arttıkça yukarı doğru çıkmaktadır, yani Gibbs serbest enerji değişiminin negatifliği azalmaktadır. Bir diğer deyişle, bu tepkimenin sıcaklık arttıkça daha az istemli olmaktadır.
  • Mavi Çizgi: C(s)+O2(g)→CO2(g)ΔG(C,CO2)\mathrm{C(s) + O_2(g) \rightarrow CO_2(g) \hspace{20pt} \Delta G(C,CO_2)}.
  • Bu tepkimenin çizgisi sıcaklıktan bağımsız olarak düz ilerlemektedir, yani Gibbs serbest enerjisi sıcaklıktan bağımsızdır ve tepkime her sıcaklıkta aynı düzeyde istemlidir.
  • Kırmızı Çizgi: 2C(s)+O2(g)→2CO(g)ΔG(C,CO)\mathrm{2C(s) + O_2(g) \rightarrow 2CO(g) \hspace{20pt} \Delta G(C,CO)}.
  • Bu tepkimenin çizgisi sıcaklık arttıkça aşağı doğru inmektedir, yani Gibbs serbest enerji değişimi daha da negatif olmaktadır. Bir diğer deyişle, bu tepkime sıcaklık arttıkça daha da istemli olmaktadır.

Karbon, metalürji endüstrisinde indirgen olarak kullanılmaktadır. Ellingham diyagramını kullanarak hangi şartlar altında madenden saf metali elde edebileceğimizi bulabiliriz. Karbon kullanarak metal oksitten ilk kez metal elde etmeye başladığımız an karbon ve metal çizgisinin kesiştiği noktadır. Bu noktanın yatay eksende denk geldiği sıcaklık değeri bizim için kritik sıcaklıktır. Kritik sıcaklığın altındayken metali saf halde elde edemeyiz. Kritik sıcaklık değerinde kimyasal denge vardır, metal oksitten metal oluşurken aynı zamanda oluşan metalin bir kısmı tekrardan metal oksit olmaktadır. Kritik sıcaklığın üzerindeki her sıcaklıkta indirgenme tepkimesi istemlidir ve başarıyla metali saf halde edebiliriz. Herhangi bir MM metali ve karbon tepkimelerini denkleştirmeden en genel haliyle aşağıdaki gibi yazabiliriz:

Tüm Reklamları Kapat

Agora Bilim Pazarı
C ile Programlama
  • Boyut: 16,5*23,0
  • Sayfa Sayısı: 947
  • Basım: 7
  • ISBN No: 9786053556237
Devamını Göster
₺805.00
C ile Programlama
  • Dış Sitelerde Paylaş

Siyah Çizgi:

MnO(s)+CO(g)→nM+CO2(g)ΔG=ΔG(CO,CO2)−ΔG(M,MnO)\mathrm{ M_nO(s) + CO(g) \rightarrow nM + CO_2 (g)} \\ \mathrm{\Delta G = \Delta G(CO,CO_2) - \Delta G(M,M_nO)}

Mavi Çizgi:

MnO(s)+C(s)→nM(s)+CO2(g)ΔG=ΔG(C,CO2)−ΔG(M,MO)\mathrm{ M_nO(s) + C(s) \rightarrow nM(s) + CO_2(g)} \\ \mathrm{\Delta G = \Delta G(C,CO_2) - \Delta G(M,MO)}

Kırmızı Çizgi:

MnO(s)+C(s)→nM(s)+CO(g)ΔG=ΔG(C,CO)−ΔG(M,MO)\mathrm{ M_nO(s) + C(s) \rightarrow nM(s) + CO(g)} \\ \mathrm{ \Delta G = \Delta G(C,CO) - \Delta G(M,MO)}

Tek yapmamız gereken Ellingham diyagramından gerekli değerleri bulup tepkimenin Gibbs serbest enerji değişimini hesaplamaktır. Eğer işlemlerimiz sonrası elde ettiğimiz sonrası elde ettiğimiz sayısal değer sıfırdan küçükse tepkimemiz istemlidir ve metali o şartlarda saf şekilde elde edebiliriz.

Bir örnek olarak TiO2\mathrm{TiO_2} molekülünü inceleyelim ve süreci adım adım yorumlayalım:

  1. Titanyum oksit görece diyagramın aşağılarında bulunmaktadır ve çoğu metal oksite göre daha kararlıdır. Mavi çizgi ve siyah çizgi hiçbir sıcaklık değerinde TiO2\mathrm{TiO_2} çizgisini kesmez yani bu tepkimeler aracılığıyla TiO2\mathrm{TiO_2} molekülünü indirgeyemeyiz. Titanyumu elde etmek için kullanabileceğimiz tek tepkime kırmızı çizgidir.
  2. Kırmızı çizgi TiO2\mathrm{TiO_2} çizgisini yaklaşık olarak 1650oC sıcaklığında keser. Bu sıcaklıkta kimyasal denge vardır, iki yönlü tepkime de gerçekleşir. Bu sıcaklığın üzerinde TiO2\mathrm{TiO_2}'yi başarıyla indirgeriz ve titanyumu aşağıdaki tepkimeyle uygun olarak saf halde elde ederiz.

TiO2(s)+C(s)→Ti(s)+2CO(g)ΔG=ΔG(C,CO)−ΔG(Ti,TiO2)<0,T>1650\hspace{90pt}\mathrm{ TiO_2(s) + C(s) \rightarrow Ti(s) + 2CO(g)} \\ \hspace{70pt} \mathrm{\Delta G = \Delta G(C,CO) - \Delta G(Ti,TiO_2) < 0}, \hspace{5pt}T>1650

Çoğu metalin indirgenmesi çok yüksek sıcaklıklar gerektiği için, bu metalürjik işlemler maden eritme ocağı adı verilen özel fırınlarda gerçekleştirilir.

Tüm Reklamları Kapat

Bir maden eritme ocağı
Bir maden eritme ocağı
Wikimedia Commons

Ek Yorumlar ve Teknik Detaylar

Yazımızda şu ana kadar Ellingham diyagramlarına dair temel bilgiler verdik ve kullanım alanlarını inceledik. Bu bölümdeyse atladığımız birkaç teknik detaya değineceğiz.

İlk olarak Gibbs serbest enerjisini ve diyagramdaki çizgileri inceleyelim. Yazının başında verdiğimiz Gibbs serbest enerji değişim formülünü tepkimeye girenler ve çıkanların Gibbs enerji değişimlerine göre yazdık. Gibbs serbest enerji formülü aynı zamanda termodinamik fonksiyonlar olan entalpi ve entropi cinsinden de yazılabilir ve aşağıdaki formu alır:

ΔG=ΔH−TΔS\mathrm{\Delta G = \Delta H - T \Delta S}

Burada ΔH\mathrm{\Delta H} entalpiyi, ΔS\mathrm{\Delta S} entropiyi ve T\mathrm{T} sıcaklığı temsil eder. Matematiksel olarak bir doğrunun denklemi y = mx + b şeklinde verilir. Burada m doğrunun eğimi, x yatay eksendeki değişken ve b doğrunun dikey ekseni kestiği değerdir. Ellingham diyagramını incelediğimizde elimizde doğrular olduğunu ve yatay eksenin sıcaklık olduğunu biliyoruz. Gibbs serbest enerji denklemi ve doğru denklemini incelersek:

Tüm Reklamları Kapat

ΔG=−ΔST+ΔH↔y=mx+b\mathrm{ \Delta G = - \Delta S T + \Delta H \leftrightarrow y = mx + b }

Buradan şu çıkarımı yapabiliriz: Ellingham diyagramındaki gördüğümüz çizgilerin eğimi −ΔS\mathrm{ - \Delta S}dir. Matematiksel olarak ifade edersek, Ellingham diyagramındaki çizgilerin gradyanı tepkimelerin standart entropi değişimidir:

∂(ΔG)∂T=−ΔS\mathrm{\large \frac{ \partial (\Delta G)}{ \partial T} = -\Delta S}

Yukarıda Ellingham diyagramını kullanarak çözdüğümüz örnekte titanyum oksitin indirgenebileceği sıcaklık değerini belirlemiştik. Oradaki formülü incelediğimizde yazıda seçtiğimiz tepkime yönünü belirleyen notasyonla çeliştiğimiz veya hata yaptığımız düşünülebilir. Metal oksitten metal oluşumu olmasına rağmen biz hesabımızı ΔG=ΔG(C,CO)−ΔG(Ti,TiO2)\mathrm{\Delta G = \Delta G(C,CO) - \Delta G(Ti,TiO_2)} şeklinde yaptık, yani tepkime yönünün tersi olmasına rağmen hesabımızda ΔG(Ti,TiO2)\mathrm{ \Delta G(Ti,TiO_2)} değerini kullandık. Aslında bu formülde bir hata yoktur, bu formüle redoks yarı tepkimelerini ve Hess yasasını kullanarak ulaştık. Yarı redoks tepkimelerini yazıp bunları topladığımızda net tepkimeyi elde ederiz.

Tüm Reklamları Kapat

C(s)→CO(g)ΔG(C,CO)\mathrm{ C(s) \rightarrow CO(g) \hspace{20pt} \Delta G(C,CO)}

TiO2(s)→Ti(s)ΔG(TiO2,Ti)\mathrm{ TiO_2(s) \rightarrow Ti(s) \hspace{20pt} \Delta G(TiO_2,Ti)}

Hess yasasına göre tepkimeleri toplayarak elde ettiğimiz genel tepkimenin Gibss serbest enerji değişimi bireysel tepkimelerin Gibbs serbest enerji değişimlerinin toplamıdır. Buna göre net tepkimenin Gibbs serbest enerji değişimi ΔG=ΔG(C,CO)+ΔG(TiO2,Ti)\mathrm{\Delta G = \Delta G(C,CO) + \Delta G(TiO_2,Ti)} olarak yazılabilir. Tepkimenin yönü değiştiğinde işaretin de değiştiği bilgisini kullandığımızda,

ΔG(TiO2,Ti)=−ΔG(Ti,TiO2)\mathrm{ \Delta G(TiO_2,Ti) = - \Delta G(Ti,TiO_2)}

Tüm Reklamları Kapat

olduğunu görürüz. Yani bizim örnekte yaptığımız hesaplama Hess Yasası ile uyumludur. İki hesaplama şekli de doğrudur, sadece bizim örnekte yazdığımız daha fazla tercih edilen şekildir.

Yazımızın başlarında Ellingham diyagramını tanıtırken bazı diyagramlarda ek eksenler olduğunu söylemiştik. Şimdi bu eksenler üzerinde duralım. Ekstra eksenlerden birincisi verilen sıcaklıkta metal - metal oksit dengesinin sağlanması için gereken oksijen kısmi basınç değeridir. Bu eksen diyagramımızda pO2\mathrm{p_{O_2}}olarak gösterilmektedir. Bu değer tepkimenin yönünü belirlemek açısından çok önemlidir. Eğer oksijenin kısmi basıncı denge basıncından yüksekse metal oksit oluşumu ağır basar, eğer düşükse saf metal oluşumu ağır basar. Bu değeri belirlemek için diyagramın sol üst köşesindeki 0 noktasından verilen sıcaklıktaki metal çizgisine doğru bir çizgi çekilir. Çizginin pO2\mathrm{p_{O_2}} ekseninde kestiği nokta oksijenin denge basıncıdır.

Oksijenin denge basıncını belirleme süreci. Bakır için 700 K sıcaklığındaki oksijen denge basınç değeri 10^-11 atm'dir
Oksijenin denge basıncını belirleme süreci. Bakır için 700 K sıcaklığındaki oksijen denge basınç değeri 10^-11 atm'dir
Olgun Yılmaz

Benzer şekilde bir metal oksitin indirgenmesi için gereken karbonmonoksit miktarının karbondioksit miktarına olan oranını belirleyebiliriz. Bu eksen diyagramımızda COCO2\mathrm{\frac{CO}{CO_2}} ile gösterilmektedir. Bunu belirlerken izlediğimiz yöntem oksijenin denge basıncını belirlemeye çok benzerdir. Diyagramın sol eksenindeki C ile belirtilen noktadan verilen sıcaklıktaki metal çizgisine çizgi çekilir. Çizginin ekseni kestiği yer bize gerekli minimum COCO2\mathrm{\frac{CO}{CO_2}} oranını verir. Metal oksitin indirgenmesi zorlaştıkça gereken karbonmonoksit oranı artmaktadır.

Metal oksitin indirgenmesi için gerekli minimum karbonmonoksit / karbondioksit oranının belirlenme süreci.
Metal oksitin indirgenmesi için gerekli minimum karbonmonoksit / karbondioksit oranının belirlenme süreci.
Olgun Yılmaz

Son olarak Ellingham diyagramının en büyük kısıtlaması hakkında konuşalım: Ellingham diyagramı süreci tamamen termodinamik olarak inceler, kimyasal kinetik hakkında hiçbir bilgi vermez. Termodinamik olarak mümkün olarak tepkimeler çok yavaş gerçekleşebileceği için, gerçek hayatta uygulanması pek pratik olmayabilir. Çok yavaş gerçekleşen tepkimeler için pirometalürjik metotlar yerine farklı metotlar uygulanabilir.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
20
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Mmm... Çok sapyoseksüel! 4
  • Muhteşem! 1
  • Tebrikler! 1
  • Bilim Budur! 1
  • Merak Uyandırıcı! 1
  • Grrr... *@$# 1
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Üzücü! 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/11/2024 13:41:06 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/11277

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Eşey
Genler
Evrim Ağacı Duyurusu
Yeşil
Asteroid
Beslenme Bilimi
Kalıtım
Sendrom
Kanser
Dağılım
Ağrı
Nöronlar
Deniz
Sars
Ara Tür
Renk
Embriyo
Tür
Periyodik Tablo
Hukuk
Ortak Ata
Carl Sagan
Evrimsel Tarih
Hayatta Kalma
Kanser Tedavisi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Y. Ertan, et al. Ellingham Diyagramı Nedir? Kimyasal Tepkimelerin Termodinamik Özelliklerini Nasıl Öngörebiliriz?. (30 Aralık 2021). Alındığı Tarih: 21 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/11277
Ertan, Y., Bakırcı, Ç. M. (2021, December 30). Ellingham Diyagramı Nedir? Kimyasal Tepkimelerin Termodinamik Özelliklerini Nasıl Öngörebiliriz?. Evrim Ağacı. Retrieved November 21, 2024. from https://evrimagaci.org/s/11277
Y. Ertan, et al. “Ellingham Diyagramı Nedir? Kimyasal Tepkimelerin Termodinamik Özelliklerini Nasıl Öngörebiliriz?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 30 Dec. 2021, https://evrimagaci.org/s/11277.
Ertan, Yiğit. Bakırcı, Çağrı Mert. “Ellingham Diyagramı Nedir? Kimyasal Tepkimelerin Termodinamik Özelliklerini Nasıl Öngörebiliriz?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, December 30, 2021. https://evrimagaci.org/s/11277.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close