Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Kimyasal Tepkimelerde Hız: Bazı Tepkimelerin Nanosaniyeler, Bazılarının Yıllar Sürmesine Neden Olan Ne?

6 dakika
40,065
Kimyasal Tepkimelerde Hız: Bazı Tepkimelerin Nanosaniyeler, Bazılarının Yıllar Sürmesine Neden Olan Ne?
Tüm Reklamları Kapat

Marketten bir süt aldığımızda bozulmasını veya metal bir takı aldığımızda paslanmasını istemeyiz. Tam tersi bir durumda, endüstriyel üretim yapılırken ise üretimin çabuk olmasını veya bir ilaç aldığımızda çabuk etki etmesini isteriz. Tüm bunlar, kimyasal tepkimelerin hızı ile ilgilidir.

Kimyasal tepkimelerin hızları ile ilgili kimya dalına kimyasal kinetik adı verilir. Kimyasal kinetik sadece kimya için değil, biyoloji, farmakoloji, kozmoloji, endüstri ve kimyanın kullanıldığı her alan için çok önemlidir. Bir tepkimenin hızını anlayabilmek ve onu ölçebilmek için önce mikroskopik düzeyde tepkimelerin nasıl gerçekleştiğini anlamalıyız.

Çarpışma Teorisi

Bu teori, adından da anlaşılacağı üzere parçacıkların çarpışması ile ilgilidir. Bu teorinin 3 temel postulatı vardır:

Tüm Reklamları Kapat

  1. Çarpışmanın tepkime ile sonuçlanabilmesi için parçacıkların belirli bir kinetik enerjiye sahip olması gerekir. Bu enerjiye sahip olmayan parçacıkların çarpışması sonucu tepkime gerçekleşmez.
  2. Parçacıkların doğru açı ile çarpışması gerekir. Bir molekül yeterli enerjiye sahip olmasına rağmen doğru açı ile çarpışmazsa tepkime gerçekleşmez.
  3. Bu şartı sağlayan çarpışmaların sayısı ile tepkime hızı doğru orantılıdır.
Sadece doğru açıda çarpışan parçacıklar arasında tepkime gerçekleşir.
Sadece doğru açıda çarpışan parçacıklar arasında tepkime gerçekleşir.
Lebanon High School

Tepkime hızını bu postulatlar üzerinden yorumlarsak: Parçacıkların çarpışma açısı bizim etkileyebileceğimiz bir şey değildir; fakat ortamın sıcaklığını arttırarak parçacıkların enerjisini arttırabiliriz. Parçacıkların enerjisini arttırdığımız zaman 3. madde doğrultusunda tepkimenin hızını arttırabiliriz. Yazımız ilerledikçe bu konu hakkında daha fazla açıklama yapacağız.

Sabit bir T sıcaklığında bile parçacıkların hepsi aynı hızda hareket etmez. Parçacıkların hızı, Maxwell-Boltzmann dağılımına uyar. Bu dağılım hızı bize belirli bir T sıcaklığındaki parçacıkların hızlarını ve bu hıza sahip parçacıkların sayısını gösterir. Bu dağılımın matematiksel detaylarına girmeyeceğiz; fakat merak edenler için matematiksel formu şöyledir:

Maxwell-Boltzmann dağılımının matematiksel ifadesi
Maxwell-Boltzmann dağılımının matematiksel ifadesi
Yiğit Ertan

Maxwell-Boltzmann dağılımının bize verdiği iki önemli bilgi vardır:

  1. Parçacığın hızı ile ortam sıcaklığı doğru orantılıdır. Sıcaklık arttıkça Maxwell-Boltzmann dağılımı değişime uğrar ve belirli bir hızı geçen parçacık sayısı artar.
  2. Parçacığın hızı ve kütlesi ters orantılıdır. Parçacığın kütlesi arttıkça yüksek hızlara ulaşma olasılığı azalır.
Maxwell-Boltzmann dağılımının farklı sıcaklıklardaki durumu
Maxwell-Boltzmann dağılımının farklı sıcaklıklardaki durumu
Khan Academy

Geçiş Hali Teorisi

Daha önce bahsettiğimiz enerji gerekliliği bu teori ile açığa kavuşacaktır. Bir tepkimeyi başlatmak için gerekli olan enerjiye aktivasyon enerjisi denir. Eğer parçacıkların çarpışması sonucu ortaya çıkan enerji tepkimenin başlaması için yeterli düzeydeyse aktifleşmiş kompleks oluşur.

Tüm Reklamları Kapat

Bir tepkimenin enerji açısında analizi
Bir tepkimenin enerji açısında analizi
Institut de Química Computacional i Catàlisi

Aktifleşmiş kompleks çok yüksek enerjiye sahip dengesiz bir yapıdır. Aktifleşmiş kompleks girenler ve ürünler arası karma bir forma sahiptir. Çok kısa bir zamanda bozunur ve bu bozunma sonucu ürünler oluşur. Maxwell-Boltzmann dağılımı ve sıcaklık etkisini burada daha iyi gözlemleyebiliriz. Maxwell-Boltzmann dağılımını incelediğimizde sadece belirli bir kesim parçacığın enerjisinin yeterli olduğunu görürüz. Geri kalan tüm koşulları sabit tutup sıcaklığı arttırdığımızda ise daha fazla sayıda parçacık bu enerjiye sahip olur.

300 K ve 310 K sıcaklığında Maxwell-Boltzmann Dağılımı
300 K ve 310 K sıcaklığında Maxwell-Boltzmann Dağılımı
Sheetal's Chemistry Blog

Aktivasyon enerjsini aşan parçacık sayısının artması daha fazla çarpışmanın tepkime ile sonuçlanacağını gösterir. Bu sonuç çarpışma teorisinin 3.postulatı ile uyumludur. Ortamın sıcaklığı arttıkça tepkime hızının artması bundan dolayıdır.

Tepkimenin Hızı

Kimyasal tepkimeleri mikroskopik düzeyde inceledik. Peki bu sonuçları makroskopik düzeye nasıl genelleştiriz ve tepkime hızlarını nasıl ölçebiliriz ? Bunun için molarite kavramı ile başlayalım. Molarite mol/litre olarak tanımlanır. Mol kavramı bize parçacık sayısını belirtir. Bir mol H2O dediğimizde 6,022x1023 tane su molekülünü kastederiz. Bu sayı kimya için çok önemlidir ve Avogadro sayısı olarak adlandırılır. Basit bir tepkimeyi inceleyelim.

Tepkimenin Molarite/Zaman grafiği
Tepkimenin Molarite/Zaman grafiği
Saylor Academy

Burada A girenleri ve B ürünleri temsil etmektedir. Zamanla A parçacıkları tepkimeye girerek B parçacıklarını oluşturur. Bu durumda A parçacıkları sayısal olarak azalacağı için molaritesi düşmeye başlar ve B parçacıkları oluşacağı için molaritesi artmaya başlar. Bunu grafikten de görebiliriz. Tepkimenin ileri zamanlarında A parçacıklarının sayısı çok azalacağı için çarpışmalar çok nadir olmaya başlar. Buradan şu sonuca varabiliri : zamanla tepkimenin hızı yavaşlar.

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Peki tepkime hızını nasıl matematiksel olarak ifade edebiliriz? Yukarıdaki sonucumuzdan matematiksel bir ifade türetmeyi deneyelim. Tepkime hızının mikroskopik düzeyde çarpışmalarla doğru orantılı olduğunu biliyoruz. Bunu makroskopik düzeyde molarite ile ifade edebiliriz çünkü molarite arttıkça birim hacimdeki parçacık sayısı artar ve daha çok çarpışma yaşanır. Örnek bir tepkime inceleyelim.

Hızın matematiksel ifadesi
Hızın matematiksel ifadesi
Yiğit Ertan

Burada [A][A] ifadesi A'nın molaritesi anlamına gelmektedir. ddt\frac{d}{dt} ifadesi ise türev operatörüdür. Burada zamana göre türev almamızın anlamı şudur: Sonsuz küçük zaman aralığında molaritenin ne kadar değiştiğini hesaplamak. Tepkime hızının bu tanımı kapalı izokorik (sabit basınçlı) sistem için IUPAC (International Union of Pure and Applied Chemistry) tarafından yapılmıştır. AA ve BB ile ilgili ifadelerin başındaki eksi (−-) işareti ise onların harcanmalarından, dolayısıyla eksiliyor olmalarından dolayıdır.

Tepkime Hız Denklemi

Yukarıdaki tepkime örneğinden devam edelim. Bu tepkime için hız denklemini şu şekilde yazabiliriz.

Tepkimenin Hız Denklemi
Tepkimenin Hız Denklemi
Yiğit Ertan

Burada kk bir sabit, mm ve nn tam sayılardır. KK sabitini Arrhenius denklemini kullanarak tanımlayabiliriz.

K sabitinin matematiksel ifadesi
K sabitinin matematiksel ifadesi
Yiğit Ertan

Burada EaE_a aktivasyon enerjisi, RR gaz sabiti ve TT de mutlak sıcaklıktır. Sıcaklık arttıkça KK sabitinin değeri artar. AA çarpanı sıklık sabiti olarak adlandırılır ve başarıyla sonuçlanan çarpışmaların bir göstergesidir.

Hız denklemindeki mm ve nn sayılarına odaklanalım. m+nm+n toplamına tepkimenin derecesi denir. Tek aşamada gerçekleşen tepkimeler için a=ma=m ve b=nb=n önermesi doğrudur fakat çok aşamalı tepkimelerde eşit olmak zorunda değildirler. Çok aşamalı bir tepkimeyi inceleyelim.

Tüm Reklamları Kapat

Çok aşamalı bir tepkime
Çok aşamalı bir tepkime
LibreTexts

En genel tepkimeye bakarak hız ifadesini şu şekilde yazabiliriz: r=k[NO2][CO]r= k[NO_2][CO]. Fakat deneysel sonuçlar bize bunun yanlış olduğunu göstermektedir. Deneylerin analizi sonucu hız tepkimesi r=k[NO2]r=k[NO_2] olarak belirlenmiştir. Kimyagerler bunu açıklamak için şöyle bir mekanizma önermiştir: Çok aşamalı tepkimelerde hız denklemini tepkimenin en yavaş adımı belirler. Tepkimenin yavaş adımı en yüksek aktivasyon enerjisine sahip adımdır ve tepkimenin önündeki en büyük engeldir. Bu adım gerçekleştikten sonra tepkime çok daha hızlı bir şekilde devam eder.

Çok adımlı tepkimeler için bir benzetme
Çok adımlı tepkimeler için bir benzetme
LibreTexts
Çok aşamalı tepkimelerin enerji düzeyi açısından analizi.
Çok aşamalı tepkimelerin enerji düzeyi açısından analizi.
Study Orgo

Bu reaksiyon için en yavaş olan aşama ilk aşamadır çünkü aktivasyon enerjisinin en büyük olduğu aşama ilkidir.

Tepkimenin Hızını Etkileyen Faktörler

Tepkimenin hızını arttırmak için 4 farklı yöntem izleyebiliriz.

Tüm Reklamları Kapat

  1. Girenlerin molaritesini arttırmak. Daha fazla sayıda parçacık daha fazla çarpışmaya yol açar.
  2. Sıcaklığı arttırmak. Parçacıkların enerjisini arttırdığımızda daha fazla çarpışma tepkime ile sonuçlanır.
  3. Yüzey alanını arttırmak: Katı ve sıvılarda daha fazla yüzey alanı demek daha fazla tepkimeye girilebilecek potansiyel parçacık dmektir ve tepkime hızı artar.
  4. Katalizör kullanmak. Katalizörler aktivasyon enerjisini düşürerek tepkimeyi hızlandırırlar. Tepkimede harcanmazlar ve girdikleri gibi çıkarlar.

Sonuç

Reaksiyonlar karmaşıklaştıkça reaksiyon kinetiğinin incelenmesi çok zorlaşır. Kimi zaman aynı anda 5-6 reaksiyon gerçekleşir ve her birinin ayrı mekanizmaları vardır.

Bu yazımızda matematiksel olarak çok detaylara girmeden konuya dair genel bir fikir vermeye çalıştık. İleri okuma için Atkin's Physical Chemistry, Physical Chemistry: A Molecular Approach ve kimyasal kinetiğin en büyük isimlerinden biri olan Keith J. Laidler tarafından yazılmış Chemical Kinetics kitabı önerilebilir.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
48
1
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 31
  • Bilim Budur! 14
  • Mmm... Çok sapyoseksüel! 6
  • Muhteşem! 5
  • Merak Uyandırıcı! 5
  • Umut Verici! 4
  • İnanılmaz 3
  • Grrr... *@$# 2
  • Güldürdü 0
  • Üzücü! 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/01/2025 05:13:34 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8531

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Evcil Hayvanlar
Ses Kaydı
Sağlık Bakanlığı
Veri
İnternet
Evrenin Genişlemesi
Proton
Teyit
Tutarlılık
Endokrin Sistemi
Saç
Regülasyon
Fizyoloji
Cinsellik
Eczacılık
Devir
Genom
Kadın Doğum
Küresel
Sivrisinek
İnsan Evrimi
Evrim Kuramı
Sendrom
Diyet
Zooloji
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Y. Ertan, et al. Kimyasal Tepkimelerde Hız: Bazı Tepkimelerin Nanosaniyeler, Bazılarının Yıllar Sürmesine Neden Olan Ne?. (12 Nisan 2020). Alındığı Tarih: 21 Ocak 2025. Alındığı Yer: https://evrimagaci.org/s/8531
Ertan, Y., Bakırcı, Ç. M. (2020, April 12). Kimyasal Tepkimelerde Hız: Bazı Tepkimelerin Nanosaniyeler, Bazılarının Yıllar Sürmesine Neden Olan Ne?. Evrim Ağacı. Retrieved January 21, 2025. from https://evrimagaci.org/s/8531
Y. Ertan, et al. “Kimyasal Tepkimelerde Hız: Bazı Tepkimelerin Nanosaniyeler, Bazılarının Yıllar Sürmesine Neden Olan Ne?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 12 Apr. 2020, https://evrimagaci.org/s/8531.
Ertan, Yiğit. Bakırcı, Çağrı Mert. “Kimyasal Tepkimelerde Hız: Bazı Tepkimelerin Nanosaniyeler, Bazılarının Yıllar Sürmesine Neden Olan Ne?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, April 12, 2020. https://evrimagaci.org/s/8531.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close