Evrim Ağacı
Reklamı Kapat

Tupper'ın Kendini Çizen Formülü: Grafiği, Kendine Eşit Olan Denklem!

Tupper'ın Kendini Çizen Formülü: Grafiği, Kendine Eşit Olan Denklem!
Tavsiye Makale
Reklamı Kapat

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Başlıkta ne demek istediğimizi anlamamış olabilirsiniz, izah edelim. Tupper'ın Formülü olarak da bilinen şu denklemden söz ediyoruz:

12<⌊mod(⌊y17⌋2(−17⌊x⌋−mod(⌊y⌋,17),2),2)⌋\LARGE{\frac{1}{2}<\lfloor{mod(\lfloor{\frac{y}{17}\rfloor}2^{(-17\lfloor{x}\rfloor-mod(\lfloor{y}\rfloor,17),2)},2)}\rfloor}

Ne harika değil mi?

İlk bakışta bir anlam ifade etmiyor olabilir, bu normal. Çünkü tek başına pek bir anlamı yok. Ancak bu denklemi ne zaman ki x-y düzleminde grafiğe döküyorsunuz, o zaman çok şaşırtıcı bir şey ortaya çıkıyor: Ana görseldeki grafik!

Yani bu denklem, grafiğe döküldüğünde denklemin kendisini veriyor!

Hemen hemen diyelim... Çünkü bunu, sadece çok spesifik bir aralıkta görebiliyorsunuz. x eksenini 0 ile 160 arası olarak seçmeniz gerekiyor. y eksenini ise kk ile k+17k+17 arasında. Bu aralıkta, kk sayısının tam olarak şu sayıya eşit olması gerekiyor:

960 939 379 918 958 884 971 672 962 127 852 754 715 004 339 660 129 306 651 505 519 271 702 802 395 266 424 689 642 842 174 350 718 121 267 153 782 770 623 355 993 237 280 874 144 307 891 325 963 941 337 723 487 857 735 749 823 926 629 715 517 173 716 995 165 232 890 538 221 612 403 238 855 866 184 013 235 585 136 048 828 693 337 902 491 454 229 288 667 081 096 184 496 091 705 183 454 067 827 731 551 705 405 381 627 380 967 602 565 625 016 981 482 083 418 783 163 849 115 590 225 610 003 652 351 370 343 874 461 848 378 737 238 198 224 849 863 465 033 159 410 054 974 700 593 138 339 226 497 249 461 751 545 728 366 702 369 745 461 014 655 997 933 798 537 483 143 786 841 806 593 422 227 898 388 722 980 000 748 404 719

Evet...

Aslında bu formül, 2001 yılında Jeff Tupper tarafından güvenilir 2 boyutlu bilgisayar grafikleri çizebilmemiz için geliştirildi. "Tek renkli bitmap görüntüsü sabiti" olarak da bilinen k sayısı, dilediğiniz herhangi bir grafiği çizebilmeniz için seçebileceğiniz bir sayı. Mesela bu sayıyı değiştirerek, herhangi bir diğer çizimi yaratmanız da mümkün. Eğer ki y eksenini sınırlandırmayacak olursanız, sayısız başka görüntü elde edebilir ve bunlar arasından kesitler alarak farklı resimler yaratabilirsiniz.

Evrim Ağacı'ndan Mesaj

Yine de bu dünyada kendi kendini çizen bir matematik denkleminin olduğunu bilmek sevindirici diyebiliriz.

Bu İçerik Size Ne Hissettirdi?
  • İnanılmaz 4
  • Muhteşem! 3
  • Tebrikler! 2
  • Mmm... Çok sapyoseksüel! 2
  • Merak Uyandırıcı! 1
  • Bilim Budur! 0
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • Wikipedia. Tupper's Self-Referential Formula. (2019, Eylül 29). Alındığı Tarih: 09 Ekim 2019. Alındığı Yer: Wikipedia | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 05/08/2020 16:20:11 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/5160

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Güncel
Agora
Radyasyon
Mühendislik
Robot
Mers
Hastalık Dağılımı
Önlem
Matematik
Şempanzeler
Mikroevrim
Parçacık
Sürüngen
Hekim
Bilim
Aslan
Albert Einstein
Hominidae
2019-Ncov
İklim
Balıkçılık
Sahtebilim
Eğitim
Kültür
Ecza
Afrika
Bakteriler
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Reklamı Kapat
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Uzay yolculuğunu sıradanlaştıramayan bir tür, diğer hayvanlardan üstün olamaz.”
Larry Niven
Geri Bildirim Gönder