Nedeni tanımında gizlidir.
Önce önerilen yanıtlardaki yanlışları aktarayım :
- Üs alma kavramı şeklinde tanımlandığı ve olduğundan , n=2 ve x=1 değerleri için değeri 1 çıkar.
Bu önerilen cevabın hatası , ifadenin sağ tarafında (yani x üzeri n-1 kısmında) n değeri yerleştirildiğinde 0'ın kalması ve aslında aradığımız şeye , aradığımız yol üzerinde rastlamamız. Bir eşitliği çözmek için önce eşitlikteki ifadelerin ne olduğunu tanımlamanız gerekir. ifadesini tanımlamadan , onun içinde bulunduğu bir eşitliği çözemeyiz.
- Üs alma kavramı , 'yi sağlayan bir fonksiyon olarak tanımlandığı için , n=0 ve m=1 değerlerinde istenen ifadenin değerinin 1 olması gerekir.
Bu önerilen cevabın öncelikli hatası, üs fonksiyonunun bu şekilde değil birazdan açıklayacağım tümevarım yöntemiyle tanımlanmasıdır. Üs fonksiyonunda toplamanın karşılığının, toplanan sayıların ayrıca üslerinin çarpımı şeklinde sonuçlanması ise ayrı bir teoremdir ve tanım yordamıyla kanıtlanır. İkinci hata ise yine benzer şekilde daha ne olduğunu bilmediğimiz ifadesine , bulmaya çalıştığımız yol üzerinde rastlamamız. Bu noktada işlemler devam edemez.
- olduğundan , n ve m değerleri 1 iken değerinin 1 olduğu ortaya çıkar.
Buradaki hata yine bir eşitlikte ne olduğunu bilmediğimiz şey varken işlemlere devam ediyor olmamızdır. Daha eşitliğin solu tanımsızken tanımsız bir şeyin karşılığında hangi sayıyı bulduğumuzun önemi yoktur , tanımı olmayan şeyin değeri olmaz.
Şimdi gerçek açıklamaya gelelim ,
Üs alma fonksiyonu ve faktöriyel fonksiyonu "tümevarımla tanımlanan fonksiyonlar" kategorisindedir. Yani bir örgüye göre ve referans noktasına göre örgü iplikçikleri gibi parçadan bütüne -yani cevaba- ulaşılır.
ifadesi , n bir gerçel sayı ve olmak üzere , şeklinde tanımlanır.
Burada önemli nokta şudur , bir sayının sıfırıncı kuvvetini 1 ya da benzer şekilde sıfır faktöriyeli 1 seçmek tamamen tümevarımla tanımlanan fonksiyonların referans noktasını tanımlamak gibi , sadece bir tercihten ibarettir. Bu değiştirilirse bir başka faktöriyel ya da üs alma fonksiyonu yaratılır. Matematikçilerin keyfi seçimi değildir bu , sıfırıncı kuvvetin 2 ya da 3 diye tanımlanması bize sezgisel olarak istediğimiz ve zihnimizde oluşan gerçek üs alma fonksiyonunu yaratmayacağı için 1 seçeriz.
Unutmayın aksiyomlar ve tanımlar değiştirilebilir , bu sadece bize farklı ilişkiler üzerine kurulan farklı bir aksiyomatik yapı sağlar. Halbuki matematik yaparken istediğimiz , insan zihnindeki sezgisel olarak inşa edilen verileri tanımlara ve aksiyomlara geçirmek. Böylelikle sezgilerimizin gösterdiği ve bizim yaşadığımız , gözlemlediğimiz unsurlar üzerinde var olan matematiği yapmış oluyoruz. Dileyen elbette ki farklı bir matematik kurabilir , ama uygulama alanını bulmak imkansız olacaktır.
Kaynaklar
- Yazar Yok. Sayıların İnşası (Kümeler Kuramı Serisi) , Ali Nesin. (3 Ağustos 2020). Alındığı Tarih: 3 Ağustos 2020. Alındığı Yer: Bağlantı | Arşiv Bağlantısı