Unutulan Trigonometri: Pek Kullanılmayan ama Faydalı Olabilecek Trigonometrik Fonksiyonlar!
Kosekantı Tanımlayabildiğiniz İçin Bilge mi Hissediyorsunuz? Hakoverkosinüs ile Tanışın!
Trigonometri, ülkemizin de dahil olduğu bir çok ülkede lise düzeyinden itibaren öğretilen, son derece önemli bir matematiksel disiplindir. Milattan önceki yıllardan beri inşa edilen trigonometrinin üzerinde çalışılmaya başlandığı ilk zamanlarda, bu araç Öklid geometrisini geliştirmekte kullanılmış ve gündelik hayatta bir çok şeyin hesabını kolaylaştırmıştır: gölgelerin boyundan, Güneş'in doğuşu ve batışının ne zaman olacağını hesaplamaya kadar...
Birçok cilt halinde basılan kitaplara konu olan trigonometri, artık günümüzde modern matematiğin disiplinlerine yardımcı olan bir araç rolü üstlenmektedir. En eski matematik disiplinlerinden biri olmasına rağmen, günümüzde de hala çok popülerdir. Daha gündelik bir tabirle, "yıllar onu eskitmemiş, aksine daha güçlendirmiştir" denebilir. Ne var ki, her köklü disiplinde olduğu gibi, trigonometride de bazı kavramlar zaman geçtikçe daha az kullanılmıştır; hatta bazıları neredeyse tamamen unutulmuştur. Bunlardan birkaçına bakmadan önce, lise derslerinden de hatırlayabileceğiniz bazı temel trigonometrik fonksiyonlara göz atalım:
- Sinüs fonksiyonu (sin\sin)
- Kosinüs fonksiyonu (cos\cos)
- Tanjant fonksiyonu (tan\tan)
- Kotanjant fonksiyonu (cot\cot)
- Sekant fonksiyonu (sec\sec)
- Kosekant fonksiyonu (cosec\cosec)
Tabii bunların her birine ek olarak, bu fonksiyonların tersi olan fonksiyonlar da düşünülebilir. Örneğin sin(x)sin(x) fonksiyonunun tersi, sin−1(x)sin^{-1}(x) veya arcsin(x)arcsin(x) olarak verilir. Bu fonksiyonların geometrik olarak neyi ifade ettiğini merak ediyorsanız, aşağıdaki grafiği inceleyebilirsiniz. Örneğin "sinüs" olarak adlandırdığımız fonksiyon, bir çemberin merkezinden herhangi bir açıyla yola çıkıp (aşağıdaki örnekte qq açısıyla yola çıkıp), vardığınız noktadan yarıçapa çizeceğiniz dik kenarın uzunluğunu hesaplamakta kullanılabilir; "kosinüs" fonksiyonu ise komşusu olan kenarın uzunluğunu verir.
Fakat görselden de fark etmiş olabileceğiniz gibi; trigonometrik fonksiyonlar, bu altı yaygın fonksiyon ve terslerinden ibaret değildir. Günümüzde unutulmaya yüz tutmuş birçok diğer trigonometrik fonksiyon vardır. Gelin bunlara bir bakalım ve her birinin neyi sembolize ettiklerini tanıyalım.
Unutulmaya Yüz Tutmuş Trigonometrik Fonksiyonlar
1) Versin fonksiyonu
versin(θ)=1−cos(θ)versin(\theta)=1-\cos(\theta) olarak tanımlanır. Geometrik olarak birim çemberde x−x- ekseni üzerinde yarıçap ile cos(θ)\cos(\theta) uzunluğu ile arasında kalan uzunluktur. Tabii sadece birinci bölgede geçerlidir.
2) Vercos fonksiyonu
vercos(θ)=1+cos(θ)vercos(\theta)=1+\cos(\theta) olarak tanımlanır.
3) Coversin fonksiyonu
coversin(θ)=1−sin(θ)coversin(\theta)=1-\sin(\theta) olarak tanımlanır. Geometrik olarak versinversin fonksiyonuna benzer, fakat bu kez y−y- ekseni için olan versiyonudur. Yine bu geometrik bakış açısı birinci bölgede geçerlidir.
4) Covercos fonksiyonu
covercos(θ)=1+sin(θ)covercos(\theta)=1+\sin(\theta) olarak tanımlanır.
5) Haversin fonksiyonu
haversin(θ)=1−cos(θ)2haversin(θ)=\frac{1-cos(θ)}{2} olarak tanımlanır.
6) Havercos fonksiyonu
havercos(θ)=1+cos(θ)2havercos(\theta)=\frac{1+\cos(\theta)}{2} olarak tanımlanır.
7) Hacoversin fonksiyonu
hacoversin(θ)=1−sin(θ)2hacoversin(\theta)=\frac{1-\sin(\theta)}{2} olarak tanımlanır.
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
8) Hacovercos fonksiyonu
hacovercos(θ)=1+sin(θ)2hacovercos(\theta)=\frac{1+\sin(\theta)}{2} olarak tanımlanır.
9) Exsec fonksiyonu
exsec(θ)=sec(θ)−1exsec(\theta)=\sec(\theta)-1 olarak tanımlanır.
10) Excosec fonksiyonu
excosec(θ)=1−cosec(θ)excosec(\theta)=1-\cosec(\theta) olarak tanımlanır.
11) Crd fonksiyonu
En eski tip trigonometrik fonksiyonlardan birisidir, şöyle oluşturulur: Bir ABCABC üçgeni düşünelim, öyle ki iki kenarı eşit ve uzunlukları 11 olsun. Bu ikiz kenarların arasındaki açıya θ\theta diyelim, işte θ\theta açısının baktığı kenarın uzunluğu crd(θ)crd(\theta) olur. Sinüs teoreminden crd(θ)=2sin(θ2)crd(\theta)=2\sin(\frac{\theta}{2}) olur.
Sonuç
Görülüyor ki fonksiyonlar aslında sadece bilinen fonksiyonların birbiriyle toplanması çıkarılması vs. ile oluşturuluyor. Neden böyle fonksiyonlar eski zamanlarda tanımlansın ki?
Bunun çok basit bir cevabı var: Eski zamanlarda işlem kolaylığı sağlıyorlardı ve günlük problemler için aslında çok kullanışlı fonksiyonlar. Çünkü bu trigonometrik fonksiyonların hepsi herhangi bir θ\theta değeri için sıfır ve sıfırdan büyük değerler alır (crdcrd fonksiyonu uzunluk üzerine kurulduğu için o da pozitiftir). Ayrıca bu fonksiyonlar sin,cos,tan,cot,sec,cosec\sin, \cos, \tan, \cot, \sec, \cosec fonksiyonları ile tanımlanmadan önce, antik zamanlarda uzunluklar aracılığı ile tanımlanıyordu; daha sonra trigonometri kuramının üzerine çalışılmaya başlandığında bu fonksiyonlar yerine daha geometrik açıdan anlaşılabilir fonksiyonlar olan sinüs, kosinüs vb. fonksiyonlar daha öne çıktı ve dolayısıyla bu fonksiyonlar da bu modern fonksiyonlar üzerinden günümüzdeki tanımlarını kazandılar. Aşağıdaki grafikte bütün bu fonksiyonların grafiklerini görebilirsiniz.
Bu grafikte fonksiyonların [−π,π][-\pi,\pi] aralığındaki grafikleri verilmiştir. Görüleceği üzere hiçbir zaman negatif olmazlar. Şimdi bu fonksiyonlar üzerindeki bazı özdeşlikleri kanıtlarıyla görelim.
- versin(θ)vercos(θ)=(1+cos(θ))(1−cos(θ))=1−cos2(θ)=sin2(θ)versin(\theta)vercos(\theta)=(1+\cos(\theta))(1-\cos(\theta))=1-\cos^2(\theta)=\sin^2(\theta)
- coversin(θ)covercos(θ)=(1+sin(θ))(1−sin(θ))=1−sin2(θ)=cos2(θ)coversin(\theta)covercos(\theta)=(1+\sin(\theta))(1-\sin(\theta))=1-\sin^2(\theta)=\cos^2(\theta)
- haversin(θ)=1−cos(θ)2=versin(θ)2haversin(θ)=\frac{1-cos(θ)}{2}=\frac{versin(\theta)}{2}
- havercos(θ)=1+cos(θ)2=vercos(θ)2havercos(θ)=\frac{1+cos(θ)}{2}=\frac{vercos(\theta)}{2}
- hacoversin(θ)=1−sin(θ)2=coversin(θ)2hacoversin(θ)=\frac{1-sin(θ)}{2}=\frac{coversin(\theta)}{2}
- hacovercos(θ)=1+sin(θ)2=covercos(θ)2hacovercos(θ)=\frac{1+sin(θ)}{2}=\frac{covercos(\theta)}{2}
- versin(θ)+vercos(θ)=1−cos(θ)+1+cos(θ)=2versin(\theta)+vercos(\theta)=1-\cos(\theta)+1+\cos(\theta)=2 (bu toplam herhangi bir θ\theta için sabit değer alır. )
- coversin(θ)+covercos(θ)=1−sin(θ)+1+sin(θ)=2coversin(\theta)+covercos(\theta)=1-\sin(\theta)+1+\sin(\theta)=2
- haversin(θ2)havercos(θ2)=(1−cos(θ2))(1+cos(θ2))4=sin2(θ2)4=(crd(θ))2haversin(\frac{\theta}{2})havercos(\frac{\theta}{2})=\frac{(1-\cos(\frac{\theta}{2}))(1+\cos(\frac{\theta}{2}))}{4}=\frac{\sin^2(\frac{\theta}{2})}{4}=(crd(\theta))^2
Bu liste bu şekilde uzatılabilir. Ancak işin özü şudur: Trigonometrinin olduğu yerde her şey, her şeyle müthiş bağlantılıdır. Bu özdeşliklerde de bu bağlantıların bazılarını görmenizi istedik.
Atalarımızın yaptığı, "ilkel" diye küçümsediğimiz bu trigonometrinin bile ne kadar güzel özdeşliklere yol açtığı çok ilgi çekicidir ve aynı zamanda matematiğin hiçbir daim ilkel olamayacağının kanıtıdır.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 27
- 13
- 10
- 8
- 6
- 6
- 2
- 2
- 1
- 0
- 0
- 0
- University of California at Berkeley. The Chord Function. (1 Ocak 2021). Alındığı Tarih: 6 Ocak 2021. Alındığı Yer: UCR | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 22/12/2024 07:17:35 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9829
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.