Unutulmuş Trigonometrik Fonksiyonlar: Sinüs ve Kosinüsün Ötesindeki Fonksiyonları Biliyor musunuz?
Trigonometri, uzunluk ve açıların ilişkisini incelemeye dayalı bir matematik dalıdır. Trigonometrik fonksiyonlar, trigonometrik oranlar olarak bilinen açılarla ilişkili olan fonksiyonlardır. Bu fonksiyonlar, genellikle sinüs ("sin"), kosinüs ("cos") ve tanjant ("tan") olarak adlandırılır. İleri düzeyde sekant ("sec"), kosekant ("csc") ve kotanjant ("cot") gibi fonksiyonlar da kullanılabilir.
Ancak, trigonometri derslerinde genellikle kullanılmayan ve bahsedilmeyen bazı diğer fonksiyonlar da vardır. Bu fonksiyonlar arasında "versin", "vercos", "coversin", "covercos", "haversin", "havercos", "hacoversin", "hacovercos", "exsec", "excosec" ve "crd" fonksiyonları bulunmaktadır.
İlk etapta bu fonksiyonlar "öylesine" uydurulmuş tanımlar gibi gözükse de, aslında birim çember üzerinde spesifik uzunluklara karşılık gelmektedir. Aşağıdaki grafik, bunu net olarak göstermektedir:
Elbette, bu uzunlukların hepsi, her uygulamada eşit derecede işlevsel değildir. Sinüs, kosinüs ve tanjanta karşılık gelen uzunluklar mühendislik ve diğer bilim dallarının çoğunda yaygın olarak kullanılmaktayken, koverkosinüs veya exsekant gibi uzunluklar çok daha kısıtlı kullanım alanına sahiptir. Bu nedenle bazı trigonometrik fonksiyonlar lise sıralarındaki derslerimize kadar girmişken, bazılarının adını bile duymamaktayız - ki bunlar, "unutulmuş trigonometrik fonksiyonlar" dediğimiz fonksiyonlardır. Gelin bunların her biriyle tanışalım.
Nadiren Bahsedilen Trigonometrik Fonksiyonlar
Csc, Sec ve Cot Fonksiyonları
Bunlardan lise derslerinde ileri düzeyde bahsedilebilir ve kullanılabilir; ancak konu bütünlüğü açısından burada yer vermekte fayda görüyoruz:
- Csc (kosekant) fonksiyonu, sin(x)\sin(x) fonksiyonunun tersidir ve 1sin(x)\frac{1}{\sin(x)} şeklinde ifade edilir.
- Sec ("sekant") fonksiyonu, cos(x)\cos(x) fonksiyonunun tersidir ve 1cos(x)\frac{1}{\cos(x)} şeklinde ifade edilir.
- Cot ("kotanjant") fonksiyonu, tan(x)\tan(x) fonksiyonunun tersidir ve 1tan(x)\frac{1}{\tan(x)} şeklinde ifade edilir
Versin ve Vercos Fonksiyonları
Tarihteki en eski trigonometri tablolarında bile yer alan versin (İng: "versed sine") fonskiyonu, kosinüs fonksiyonunun 1'den çıkarılmasıyla elde edilir. Vercos (İng: "versed cosine") fonksiyonu ise kosinüs fonksiyonuna 1 eklenmesiyle elde edilir. Trigonometrik formülasyonları şu şekildedir:
versin(θ):=2sin2 (θ2)=1−cos(θ) {\textrm {versin}}(\theta ):=2\sin ^{2}\!\left({\frac {\theta }{2}}\right)=1-\cos(\theta )\,
vercos(θ):=2cos2 (θ2)=1+cos(θ) {\textrm {vercos}}(\theta ):=2\cos ^{2}\!\left({\frac {\theta }{2}}\right)=1+\cos(\theta )\,
Coversin ve Covercos Fonksiyonları
Coversin (İng: "coversed sine") ve covercos (İng: "coversed cosine") fonksiyonları, versin ve vercos fonksiyonunun 90 dereceden çıkarılmış halidir. Keza, 1'den sinüs fonksiyonunun çıkarılması veya sinüs fonksiyonuna 1 eklenmesiyle de elde edilirler. Trigonometrik formülasyonları şu şekildedir:
coversin(θ):=versin (π2−θ)=1−sin(θ) {\displaystyle {\textrm {coversin}}(\theta ):={\textrm {versin}}\!\left({\frac {\pi }{2}}-\theta \right)=1-\sin(\theta )\,}
covercos(θ):=vercos (π2−θ)=1+sin(θ) {\displaystyle {\textrm {covercos}}(\theta ):={\textrm {vercos}}\!\left({\frac {\pi }{2}}-\theta \right)=1+\sin(\theta )\,}
Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.
KreosusKreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.
Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.
PatreonPatreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.
Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.
YouTubeYouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.
Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.
Diğer PlatformlarBu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.
Giriş yapmayı unutmayın!Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.
Haversin ve Havercos Fonksiyonları
Haversinüs, tarihsel olarak özellikle navigasyon (yön bulma) için önemli bir fonksiyondu, çünkü açısal konumlar verildiğinde, Dünya gibi astronomik bir sferoid üzerindeki mesafeleri makul bir şekilde doğru bir şekilde hesaplamak için kullanılabiliyordu. Aslında aynı hesap için doğrudan sinüs de kullanılabilir, ancak bir haversinüs tablosuna başvurmak, kareleri ve karekökleri hesaplama ihtiyacını ortadan kaldırıyordu. Haversinüs ve haverkosinüs fonksiyonlarının trigonometrik tanımları şu şekildedir:
haversin(θ):=versin(θ)2=sin2 (θ2)=1−cos(θ)2 {\displaystyle {\textrm {haversin}}(\theta ):={\frac {{\textrm {versin}}(\theta )}{2}}=\sin ^{2}\!\left({\frac {\theta }{2}}\right)={\frac {1-\cos(\theta )}{2}}\,}
havercos(θ):=vercos(θ)2=cos2 (θ2)=1+cos(θ)2 {\displaystyle {\textrm {havercos}}(\theta ):={\frac {{\textrm {vercos}}(\theta )}{2}}=\cos ^{2}\!\left({\frac {\theta }{2}}\right)={\frac {1+\cos(\theta )}{2}}\,}
Hacoversin ve Hacovercos Fonksiyonları
Hacoversin ve hacovercos fonksiyonları, haversin ve havercos fonksiyonlarının yarısıdır. Trigonometrik tanımları şu şekildedir:
hacoversin(θ):=coversin(θ)2=1−sin(θ)2 {\textrm {hacoversin}}(\theta ):={\frac {{\textrm {coversin}}(\theta )}{2}}={\frac {1-\sin(\theta )}{2}}\,
hacovercos(θ):=covercos(θ)2=1+sin(θ)2 {\textrm {hacovercos}}(\theta ):={\frac {{\textrm {covercos}}(\theta )}{2}}={\frac {1+\sin(\theta )}{2}}\,
Exsec ve Excosec Fonksiyonları
Exsec (İng: "exsecant") ve excosec (İng: "excosecant") fonksiyonları, sekant ve kosekant fonksiyonlarıyla tanımlanan trigonometrik fonksiyonlardır. Tarihsel olarak ölçme, demiryolu mühendisliği, inşaat mühendisliği, astronomi ve küresel trigonometri gibi alanlarda önemli fonksiyonlardı ve hesaplardaki isabetliliği artırmaya yardımcı olabiliyorlardı; ancak günümüzde bazı hesaplamaları basitleştirmek dışında nadiren kullanılmaktadırlar. Trigonometrik tanımları şu şekildedir:
exsec(θ)=sec(θ)−1=1cos(θ)−1{\displaystyle \operatorname {exsec} (\theta )=\sec(\theta )-1={\frac {1}{\cos(\theta )}}-1}
excsc(θ)=exsec(π2−θ)=csc(θ)−1=1sin(θ)−1{\displaystyle \operatorname {excsc} (\theta )=\operatorname {exsec} \left({\frac {\pi }{2}}-\theta \right)=\csc(\theta )-1={\frac {1}{\sin(\theta )}}-1}
Crd Fonksiyonları
crd (İng: "chord", Tür: "kiriş") fonksiyonu ise, özel bir trigonometrik fonksiyondur ve genellikle bir çember içindeki kiriş uzunluğunu hesaplamak için kullanılır. Trigonometrik tanımı şu şekildedir:
crd(θ)=2sin(θ2)\displaystyle \operatorname {crd}(θ) = 2 \sin(\frac{θ}{2})
Sonuç
Sonuç olarak trigonometri, derslerde öğretilen fonksiyonlardan ibaret değildir ve çok daha derin ve uzun bir geçmişi vardır. Her ne kadar bunların önemli bir bölümü artık yaygın olarak kullanılmasa da sinüs, kosinüs ve tanjant fonksiyonlarına ek olarak csc, sec, cot, versin, vercos, coversin, covercos, haversin, havercos, hacoversin, hacovercos, exsec, excosec ve crd gibi çok sayıda trigonometrik fonksiyonlar da vardır. Bu fonksiyonların her biri, birim çemberdeki farklı uzunlukları tarif ederler ve kimi durumda çok özel nedenlerle kullanılabilirler.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 21
- 12
- 10
- 8
- 4
- 2
- 2
- 1
- 1
- 0
- 0
- 0
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 19/01/2025 05:21:41 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13862
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.