Paylaşım Yap
Tüm Reklamları Kapat

Rubik Küp Nedir? Bir Rubik Küp, Kara Delikleri Aydınlatabilir mi?

10 dakika
14,253
Rubik Küp Nedir? Bir Rubik Küp, Kara Delikleri Aydınlatabilir mi? Игорь Альшин
Evrim Ağacı Akademi: Kara Delikler Yazı Dizisi

Bu yazı, Kara Delikler yazı dizisinin 20 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Kara Delik Nedir? Kara Delik Nasıl Oluşur?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Rubik Küp; bir arada tutulurken aynı zamanda hareket ettirilebilen, birbirinden bağımsız parçalardan oluşmuş bir bulmaca türüdür. Her ne kadar çok çeşitli tasarımlar ve renklerde Rubik küpleri bulmak mümkünse de günümüzde standart olarak 6 farklı renk kullanılarak tasarlananan bu küplerin çözümü, bu aynı renklerdeki parçaları bir araya getirmeye dayanmaktadır. İlk çözümü, küpün mucidi Macar heykeltraş ve mimar Prof. Dr. Ernő Rubik tarafından 1 ayda gerçekleştirilebilmiştir.

Rubik küpün ilk hali.
Rubik küpün ilk hali.
Invention

Rubik Küp'ün Kısa Bir Tarihçesi

1974 yılında, Macar heykeltıraş ve mimarlık profesörü Erno Rubik, öğrencilere üç boyutlu nesneleri daha akılda kalıcı bir şekilde anlatmak için bir küp tasarlamaya karar verdi. Birbirinden ayırdığı parçaları birleştirmekte zorlandığını fark ettikten sonra da bunun bir bulmaca olmaya uygun olduğuna karar verdi. Bu küpe ilk olarak "Sihirli Küp" adını verdi. Ancak üretim ve satışına başlandıktan sonra bu icada "Rubik's Cube" (Tür: "Rubik'in Küpü") adı verilmiş, küpün ismi dilimize de "Rubik Küp" olarak geçmiştir.

1975 yılında patentinin alınmasıyla 1977 yılının sonlarına doğru üretimine başlanmış ve Macaristan'daki oyuncakçılarda yerini almıştır.  1980 yılında ilk defa yaygın olarak ticari hale getirilmiş ve aynı sene (ve sonraki sene de) Almanya Yılın Oyunu ödülünü "bulmaca/yapboz" kategorisinde kazanmıştır. 2021 yılı itibariyle Dünya çapında 450 milyon adet satılmıştır. Bu, Rubik Kübü'nü Dünya'nın en çok satılan yapboz oyunu yapmaktadır. Aynı zamanda Dünya'nın en çok satan oyuncağı olarak da bilinmektedir.

Tüm Reklamları Kapat

Klasik 3x3 küp üzerindeki 6 yüzde 9'ar yapışkan bulunur. Her biri, şu 6 renkten biridir: beyaz, kırmızı, mavi, turuncu, yeşil ve sarı. Günümüzdeki versiyonlarda beyaz sarının, mavi yeşilin, turuncu kırmızının karşısında yer alır. Her ne kadar popülerliğinin zirvesine 1980'lerde ulaştıysa da, halen "hızküpleri" diyebileceğimiz "speedcuber" isimli kişiler, Dünya rekorlarını kırmaya çalışmakta ve bu oyuncağın sınırlarını zorlamaktadır. Aşağıdaki videoda bunun bir örneğini görebilirsiniz:

Bu küplerin her bir yüzündeki parça sayısı 9 olmak zorunda değildir, daha karmaşık ya da daha az karmaşık yapılabilir. Örneğin klasik 9 parçalı bir küpte 8 köşe, 12 kenar bulunur. Köşelerdeki parçalar 40,320 farklı pozisyonda bulunabilir. Köşelerde bulunan 8 pozisyondan 7 tanesi bağımsızdır, 8.'nin pozisyonu ise önceki 7 tanesine bağımlıdır ve 2187 olasılıktan birine uymak zorundadır. Kenarlardaki parçalar ise 239,500,800 farklı olası pozisyona sahiptir. 

Benzer şekilde 11 kenarı bağımsız olarak belirleyebilirsiniz, 12. ise ilk 11'in konumuna göre 2048 olası pozisyondan birinde bulunur. Bu olasılıklar göz önüne alındığında, klasik bir Rubik kübü 43.252.003.274.489.856.000 farklı pozisyona girebilir. Bu, 43 kuintilyona eşittir (1000 katrilyon, 1 milyon trilyon). 

Yıllar geçtikçe Rubik Küp'e olan ilgi hızla artmaya devam etmiş ve farklı farklı çözüm yöntemleri ve "algoritma" adı verilen kısa hamle dizileri keşfedilmiştir. Bu çözüm yöntemlerinden en bilindik ve yaygın olanları "Çömez Metodu" dur. Bu yöntem ilk olarak herhangi bir renkte 5 kareyle bir artı şekli oluşturulmasıyla başlar. Bu artının kenarları yan yüzlerdeki renklerle uyumlu olmalıdır. Ardından artının bulunduğu yüzün köşeleri de yerine oturtulur. Bu adımı ikinci katmanın köşe parçalarının yerine oturtulması izler. Sonrasında sırasıyla en üst katmanda artı oluşturulur, artının kenarları ayarlanır ve son olarak da köşeler yerine oturtularak çözüm tamamlanır. Bu çözüm yöntemini, olabildiğince kolay bir algoritmaya dayandığı için"Çömez Metodu" olarak isimlendirilmiştir.

Tüm Reklamları Kapat

kübün kısımları
kübün kısımları

Küp Dili

Çözüm varyantlarının artması, algoritmalarda karmaşaya yol açmış ve bundan dolayı da evrensel bir "Rubik dili" icat edilmiştir. Bu dilin mantığı oldukça basittir ve en temelde, aşağıdaki hareketlerden oluşurlar:

  • "R" harfi sağ (İng: "right") katmanı,
  • "L" harfi sol (İng: "left") katmanı,
  • "D" harfi alt (İng: "down") katmanı,
  • "U" harfi üst (İng: "up") katmanı,
  • "F" harfi ön (İng: "front") katmanı,
  • "B" harfi ise arka (İng: "back") katmanı

Bu hamleleri çevirme yönü ise harfin yanında herhangi bir işaret yoksa saat yönüne (sağa), harfin yanında apostrof (') işareti varsa saat yönünün tersine (sola) doğru uygulanır.

Aslında Rubik dilinde bundan daha fazla sayıda hareket de vardır; bunları aşağıdaki listede görebilirsiniz:

Rubik küpünde yapılabilecek hareketlerin listesi.
Rubik küpünde yapılabilecek hareketlerin listesi.
JPERM

Matematiksel Altyapı

Rubik küpün üzerindeki küplerin hareketlerinin açıklanması bazı matematiksel konseptlerin anlaşılmasını kolaylaştırabilir. Ayrıca küpün nasıl çalıştığını daha iyi anlayabilmemizi sağlar.

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Grup teorisi (ya da simetri teorisi), nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümleri yani simetrileri inceler. Matematiğin önemli bir dalıdır. Ancak grup teorisi sadece matematikte kullanılmaz. Özellikle modern fizikteki yeri çok önemlidir. Yine fizikte korunum yasaları ve simetrilerin açıklanabilmesini sağlar.

Uygulanan işlemlerin nesnede hiç etki bırakmamış gibi sonuç elde edilebilmesi nedeniyle bu işlemler arasındaki dönüşümler ile nesnenin istenilen başka bir sonuç vermesi de sağlanabilir. Böylece Rubik Küpün çözümü veya çalışması matematiksel olarak açıklanabilmiş olur. Bu nedenle Rubik Küpün matematiksel ifadesinin açıklamasının grup teorisi ile sağlanması mümkündür. Ancak bu yazıyı fazla uzun ve karmaşık tutmamak için, grup teorisi ile elde edilecek çözüm yöntemi ve karmaşık matematiksel ifadeleri burada belirtmedik.

3x3x3 klasik bir Rubik Küp için şu gözlemlerde bulunulabilir:

  • 27 tane küçük küpten oluşur.
  • Merkezdeki küp hareket edemeyeceği için, çözüm, 26 küp üzerinden düşünülmelidir.
  • Bunların 8'i köşe, 12'si kenar ve 6'sı her yüz için merkez küpüdür.
  • Bunların sırasıyla 3, 2 ve 1 yüzlerinin düşünülmesi gerekir.

Bu altı yüz için küp dili bölümünde anlatıldığı gibi farklı isimler kullanalım. Her yüzdeki 9 küçük küpün yüzlerine "hücre" diyelim. Bunlar küplerle aynı şekilde isimlendirilir; ancak küpün bulunacağı alanı tanımlarlar. Buna örnek olarak bir köşe küpü verilebilir. Üst, ön ve sağ yüzlerin kesiştiği yerdeki küp urf (İng: "up-right-front") harfleriyle gösterilir. Böylece, eğer Rubik Küp başlangıçtaki ​​durumundaysa yani çözülmüş haldeyse, her bir küp aynı isimli hücrede bulunur (urf küpü urf hücresinde, f küpü f'de bulunur).

Rubik Küpün bir yüzü döndürülürse, hücreler hareket etmez; ancak küpler hareket eder. Merkez küpleri ise yine kendi bölmelerinde kalırlar.

Son olarak Rubik Küpün bazı hareketlerine isim gerekir. Yapılabilecek en temel hareket, tek bir yüzün döndürülmesidir. Yüzlerin saat yönünde dönüşlerini belirtmek için R, L, U, D, F ve B büyük harfleri kullanılır. Sağ yüzü saat yönünün tersine döndürmek, R'yi üç kez yapmakla aynıdır; çünkü bir yüzü 4 kez döndürürsek, küp, eski haline gelecektir.

Tüm Reklamları Kapat

Kolayca anlaşılabilecek bazı noktalar şunlardır:

  1. İlk olarak, hareketin merkez küplerin hangi hücrede bulunduğunu etkilemediği söylenebilir. Herhangi bir hareket, 6 temel hareketin (U, D, F, R, L, B) farklı kombinasyonları olduğundan, her harekette merkez küpleri kendi hücresinde kalır.
  2. İkincisi, herhangi bir hareket sonucunda köşe hücresi kenarda veya kenar hücresi köşede bulunamaz. Çünkü bu 6 hareketin sıralamaları olarak ortaya çıkacak hareketler sonucu ancak kenar hücreleri kenar hücreleri ile, köşe hücreleri köşe hücreleri ile yer değiştirebilir.

Bu iki bilgiyi kullanarak Rubik Küpün kaç tane olası konfigürasyonu olduğu bulunabilir. Örneğin, urf hücresine bakalım. Teorik olarak, 8 köşe küpünden herhangi biri bu hücrede bulunabilir. Yani, urb hücresinde bulunabilecek 7 köşe küpü, bir sonraki köşe hücresi için olası 6 köşe küpü vardır ve bu böyle azalarak tek köşe küpü kalana kadar devam eder. Bu nedenle, köşe küplerinin bulunabileceği 8×7×6×5×4×3×2×1=8!8\times 7\times 6\times 5\times 4\times 3\times 2\times 1 = 8! tane konum vardır. Bir köşe küpünün, bölmesine 3 farklı şekilde yerleşilebileceğine dikkat edilmesi gerekir. Örneğin, urf hücresinde kırmızı, beyaz ve mavi bir küp varsa, kırmızı, beyaz veya mavi yüz hücrenin u yüzünde olabilir. 8 köşe küpü olduğundan ve her biri kendi bölmesinde 3 farklı şekilde yerleştirilebileceği için köşe küplerinin yerleşebileceği 38 farklı durum vardır. Bu nedenle, 38×8!3^8\times 8! olası köşe konfigürasyonu olduğu sonucuna ulaşılır. Benzer şekilde, 12 kenar küpü olduğundan 12! kenar küpü konumu mümkündür. Köşe küplerinde 3 olası yerleşim olması gibi her kenar küpün 2 olası yönü vardır ve bu da 212 olası yerleştirme demektir. Dolayısıyla kenar küpleri için 212⋅12!2^{12}·12! konfigürasyon elde edilir.

Kenar küplerinin olası konfigürasyonları toplamda 212×38×8!×12!2^{12}\times 3^8\times 8!\times 12! yani yaklaşık olarak 5.19022404×10205.19022404\times 10^{20} mertebesindedir.

Tüm Reklamları Kapat

Bilgisayarlar da Rubik Küp Çözebilir!

Takviye/pekiştirmeli öğrenim, denetimli ve denetimsiz öğrenmeyle beraber makine öğrenmesinin üç temel paradigmasından biridir. Bu öğrenme biçimi, ödülü en üst düzeye çıkarmak için uygun eylemi yapmakla ilgilidir. Aslında "uygun eylem"den ziyade, "daha uygun" eylemin yapılmasından bahsedilmesi daha doğru olacaktır.

Belirli bir durumda yapılması gereken olası en iyi davranışı veya yolu bulmak için çeşitli yazılımlar ve makineler tarafından kullanılır. Takviyeli öğrenme, denetimli öğrenmeden, denetimli öğrenmede eğitim verilerinin cevap anahtarına sahip olması ve böylece modelin doğru cevabın kendisi ile eğitilmesi, takviyeli öğrenmede cevap olmaması ancak takviye alanının ne yapacağına karar vermesi bakımından farklıdır. Bir makine veri kümesinin yokluğunda, deneyimleyerek öğrenmek zorundadır ve bu durumda denetimli öğrenme değil, pekiştirmeli öğrenme kullanılması doğru olacaktır. Kısaca bu öğrenme şekli, modeli bilinen ancak analitik bir çözümün mevcut olmadığı durumlarda kullanılır. Dolayısıyla Rubik Küp çözümünün makineye öğretilebilmesi için en uygun yol bu olacaktır.

California Üniversitesinden Forest Agostinelli, Stephen McAleer ve Alexander Shmakov da bu yöntemi kullanarak rubik küpü çözmek üzere bir algoritma kurmak için DeepCubeA programı ile çalışmışlardır. Kullandıkları algoritma aşağıda verilmiştir.

DeepCubeA için kullanılan algoritma.
DeepCubeA için kullanılan algoritma.
DeepCubeA'nın simetrik durumlara bulduğu simetrik çözümlere bir örnek. Eşlenik üçlüler yeşil kutularla belirtilmiştir. Son iki eşlenik üçlünün örtüştüğüne dikkat edin.
DeepCubeA'nın simetrik durumlara bulduğu simetrik çözümlere bir örnek. Eşlenik üçlüler yeşil kutularla belirtilmiştir. Son iki eşlenik üçlünün örtüştüğüne dikkat edin.

Sonuçta makalede kullandıkları algoritma hakkında şunu belirtmişlerdir:

Tüm Reklamları Kapat

Agora Bilim Pazarı
Walter Benjamin Kitaplığı (3 Kitap)

Fotoğraf Yazıları
Walter Benjamin

“Walter Benjamin fotoğrafı hatırlatmaktan hiç vazgeçmedi. Tarih boyunca değişen, uyum sağlayan, gelişen bir şey olarak fotoğrafın izini süren güçlü bir fotoğraf eleştirmeniydi. Fotoğrafın bir tarihi, bir hayatı olduğuna inandı. […] Benjamin’in gözlemlediği üzere fotoğraf iktidardakiler ve geleneksel sanata gereğinden fazla özlem duyanlar tarafından kötüye kullanılabilir ve kullanılmıştır da […] Fotoğraf yozlaşabilir. İçinde bulunduğu zamandan ayrı düşebilir ya da (fotoğraftaki) özneleri genel olarak kötüye kullandığı gibi onu da kötüye kullanan baskıcı güçlerin güdümüne girebilir. Benjamin’in fotoğrafa dair ve fotoğrafın yörüngesindeki çeşitli yazılarıyla amaçladığı şey, panoramik bir bakışla okurunu bu aracın potansiyeli ve gerçekliği konusunda eğitmektir.”

Walter Benjamin’in fotoğraf yazılarından oluşan bu derleme aşina olduğumuz fotoğrafa başka bir gözle tekrar bakma, işlevini, imkânlarını yeniden düşünme olanağı sunuyor; fotoğrafın zaman içinde kazandığı ve kazandırdığı farklı anlamların izini sürüyor. Bu derlemede yer alan tüm yazılar Leslie’nin sunuşuyla açılıyor, değinilen kişi ve kavramların açıklandığı sözlüklerle sona eriyor. Kitapta ayrıca Benjamin’in atıfta bulunduğu fotoğraflardan örnekler de yer alıyor.

Karşılaşmalar: Bir Benjamin Romanı

Jay Parini

“Hiçbir zaman tatmin edemediği Tarih Meleği tarafından öldürülmüştü hiç kuşkusuz. Onu öldüren en bariz şeyse genellikle alaycı bir şekilde tetikte bekleyip en sonunda her zaman sahnede belirerek daha önce gerçekleşmiş olan her şeyin, her çıtkırıldım adım ve irkilmenin, gözün her titreşiminin, kalpten hissedilmiş her çizginin ve rasgele her jestin yazarlığını üstelenen Zaman’dı.”

Walter Benjamin’in 1940 yılında Nazi Almanya’sının Fransa’yı işgalinin hemen ardından Paris’ten kaçışıyla başlayan Karşılaşmalar Benjamin’in tutkularıyla tuhaflıklarının peşine düşüp ölümünün matemini tutuyor.

Felsefe tartışmaları, Nazi işgali, savaş ve kaçış ekseninde ilerleyen, Bertolt Brecht, Gershom Scholem, Hannah Arendt gibi isimlerin de yer aldığı romanda, Benjamin arkadaşları ve ailesi, aşkları ve yalnızlığı, hayatı ve intiharı, gözünden sakındığı elyazması sayfalar vasıtasıyla yeniden ete kemiğe bürünürken hayat hikâyesi de yirminci yüzyılın ortasında dünyayı yakıp yıkan korkunç savaşın güçlü bir metaforuna dönüşüyor.

Walter Benjamin – Gershom Scholem Mektuplaşmalar 1932-1940

Derleyen: Gershom Scholem

İki büyük savaşın damga vurduğu karanlıkta, tüm güçlüklere karşın bağlarını sürdürme çabalarından vazgeçmeyen Almanyalı iki Yahudi entelektüelin 1932’den 1940’a dek süren mektuplaşmaları, hem döneme hem de yazarlarına ilişkin çok önemli bilgiler sunuyor. 20. yüzyılın en önemli edebiyat ve sanat eleştirmeni olarak ölümünden sonra üne kavuşan Walter Benjamin ile Yahudi mistisizmi ve Kabala üstüne yapıtlarıyla tanınan Gerschom Scholem’in dostluğu, Benjamin’in 1940’ta Fransa-İspanya sınırında intiharıyla sonlanana dek gücünden hiçbir şey kaybetmeden devam etmiştir.

Bugün bildiğimiz eserlerinin ortaya çıkış ve yazılış süreçleri, dönemin entelektüel kişilikleri, edebiyat tartışmaları, Kafka, Baudleaire, Yahudilik, savaş ve ölüm mektupların satırlarında kendisini gösterirken, zor zamanlarda insan olarak var kalabilmenin ne kadar ağır bir yükü taşımak anlamına geldiği de apaçık bir biçimde ortaya çıkıyor. Tüm bu kaygının ve belirsizliğin içinde bile zihinsel üretimlerini hayatta kalma faaliyetlerinin asli öğesi olarak görmeyi sürdüren Benjamin ve Scholem tekerrür etmekte hiç kararsız olmayan tarih için de bir tinsel direniş belgesi sunuyorlar.

“Bugün yayımlanmasını sağladığımız her satır –bu satırları miras bıraktığımız gelecek ne denli belirsiz olursa olsun– bu karanlık dönemin güçlerinin karşısında kazanılmış bir zaferdir.”

Devamını Göster
₺550.00
Walter Benjamin Kitaplığı (3 Kitap)
  • Dış Sitelerde Paylaş

Algoritmanın genelliği; geniş durum uzayları ve birkaç durum ile ilgili problemlerin çözümü, robotik ve doğa bilimlerinde geniş kullanım alanına sahip olduğu için algoritmanın bunun gibi kombinatoryal bulmacaların ötesinde uygulamalara sahip olabileceğini düşündürmektedir.

Kullanılan algoritma hem doğa bilimleri hem robotikte geniş uygulama alanları için problem çözmede kullanılabilecek algoritmalar ile benzerlik gösterebilir. Sonuçta ortada geniş durum uzayları içerisinde seçilmek istenilen durumlar vardır ve hem robotik hem de doğa bilimlerinde buna benzer çözüme sahip olabilecek problemler olabilir.

Bu tür algoritmalar üzerine inşa edilen robotlar, Rubik Küp çözme konusunda rekor üstüne rekor kırmayı başarmıştır. Aşağıda bir kübü 1 saniyeden kısa bir sürede çözebilen bir robot örneği izlenebilir:

Rubik Küpler ve Kara Delikler

Rubik küpün çözümü için oluşturulmuş bir algoritmanın daha karmaşık doğa bilimleri problemlerini çözmekte kullanılabileceği belki çok şaşırtıcı olmayabilir. Peki Rubik Küplerin insanlara ilham verebileceği daha ilginç konular olabilir mi?

Evet, olabilir, kara delikler! Bunun için kara deliklerde bilgi paradoksu hakkında bilgi sahibi olunması gerekir, bu konudaki makalemize buradan ulaşabilirsiniz. Ama kısaca açıklamak gerekirse, kara delik buharlaşmasının ya birliktelik kaybına ya da makroskopik entropi taşıyan kalıntılara yol açacağı fark edilmiştir. Bunun olası bir çözümü için ise Hawking radyasyonunun, daha doğrusu bu radyasyon üzerine yapılacak küçük eklentiler sonucu ortaya çıkacak yapının kara delikten "bilgi kaçırması" düşünülmüştür. Ancak bazı kaynaklardaki bazı makul varsayımlara tabi olarak, ne yarı-klasik Hawking radyasyonu ne de ona yapılan küçük eklentilerin kara deliklerden yeterli miktarda bilgiyi alıp götüremeyeceği iddia edildi. Bunun yerine, kara deliğin içindeki ve dışındaki serbestlik dereceleri arasındaki dolaşıklık entropisi, kaçınılmaz olarak ya bir kalıntıya ya da karma bir duruma yol açarak, bir bütünlük kaybı anlamına gelecek şekilde artacaktır.

Hawking radyasyonu için sembolik bir görsel
Hawking radyasyonu için sembolik bir görsel

Bu kargaşa üzerine aynı gereksinimleri karşılayacak başka bir model Bart lomiej Czech, Klaus Larjo ve Moshe Rozali tarafından önerilmiştir. Önerilen modellemede bir Rubik Küp üzerinden modelleme yapılmıştır.

Bu modellemeyi anlamak için kara deliğin içini bir Rubik Küp olarak düşünün. Hilbert'in iç uzayı, küpün 5×19×10205\times 19\times 10^{20} konfigürasyonu tarafından kapsanacaktır. Küpün çözülmüş durumunun iç vakum (İng: "internal vacuum") olduğunu ve buharlaşan kara deliğe tekabül ettiğini kabul edelim.

Bu durumda bir dalgalanma olay ufkunda bir parçacık-anti parçacık çifti oluşmuş olması durumunu ifade edecektir. Bu da kara deliğin bir Hawking parçacığı yaydığını gösterecektir.

Bu etki, küp çözülene kadar devam edecektir. Böylece her bir dalgalanma küp analojisinde küpün çözümüne yönelik bir ilerleme sağlanmasını sağlayacaktır. Bu da kuantum mekaniksel olarak kara deliğin dalga fonksiyonunu yavaş yavaş iç vakuma, dolayısıyla buharlaşmaya doğru yoğunlaştıracaktır. Çünkü herhangi bir rastgele hareket dizisi, eninde sonunda küpün çözümüne yol açacaktır.

Bu düşünce doğrultusunda araştırmacılar farklı yollardan aynı sonuca ulaştıran üç farklı model öne sürmüşler ve bunlardan yola çıkarak nihayet nihai bir modele ulaşmışlardır.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Kara Delikler Yazı Dizisi

Bu yazı, Kara Delikler yazı dizisinin 20 . yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan " Kara Delik Nedir? Kara Delik Nasıl Oluşur?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
66
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 18
  • Mmm... Çok sapyoseksüel! 10
  • İnanılmaz 10
  • Muhteşem! 7
  • Bilim Budur! 7
  • Umut Verici! 6
  • Merak Uyandırıcı! 6
  • Korkutucu! 2
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
Kaynaklar ve İleri Okuma
Sıkça Sorulan Sorular

Rubik Küp, birbirinden bağımsız parçalardan oluşmuş bir bulmaca türüdür. Bir arada tutulurken aynı zamanda hareket ettirilebilir.

Macar heykeltıraş ve mimarlık profesörü Erno Rubik tarafından 1974 yılında tasarlanmıştır. Patentinin alınmasının ardından 1977'de üretimine başlanmıştır. 1980 yılında yaygın olarak ticari hale getirilmiş ve Almanya Yılın Oyunu ödülünü kazanmıştır. 2021 yılı itibariyle dünya çapında 450 milyon adet satılmıştır.

6 yüzde 9'ar yapışkan bulunan ve beyaz, kırmızı, mavi, turuncu, yeşil ve sarı renklere sahip bir küptür. Günümüzdeki versiyonlarda beyaz sarının, mavi yeşilin, turuncu kırmızının karşısında yer alır. Her bir yüzündeki parça sayısı 9 olmak zorunda değildir ve daha karmaşık ya da daha az karmaşık yapılar da olabilir.

Rubik Küp, 43.252.003.274.489.856.000 farklı pozisyona sahiptir. Bu, 43 kuintilyona eşittir (1000 katrilyon, 1 milyon trilyon).

Evet, Rubik Küp hala popüler bir oyuncağın ve bulmacanın bir örneğidir. Hız küpleri olarak adlandırılan speedcuber'lar, Dünya rekorlarını kırmaya çalışmakta ve bu oyuncağın sınırlarını zorlamaktadır.

Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/11/2024 15:07:31 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/11815

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Eşey
Genler
Evrim Ağacı Duyurusu
Yeşil
Asteroid
Beslenme Bilimi
Kalıtım
Sendrom
Kanser
Dağılım
Ağrı
Nöronlar
Deniz
Sars
Ara Tür
Renk
Embriyo
Tür
Periyodik Tablo
Hukuk
Ortak Ata
Carl Sagan
Evrimsel Tarih
Hayatta Kalma
Kanser Tedavisi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
E. O. Kaya, et al. Rubik Küp Nedir? Bir Rubik Küp, Kara Delikleri Aydınlatabilir mi?. (28 Mayıs 2022). Alındığı Tarih: 21 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/11815
Kaya, E. O., Alparslan, E., Koç, . (2022, May 28). Rubik Küp Nedir? Bir Rubik Küp, Kara Delikleri Aydınlatabilir mi?. Evrim Ağacı. Retrieved November 21, 2024. from https://evrimagaci.org/s/11815
E. O. Kaya, et al. “Rubik Küp Nedir? Bir Rubik Küp, Kara Delikleri Aydınlatabilir mi?.” Edited by Eda Alparslan. Evrim Ağacı, 28 May. 2022, https://evrimagaci.org/s/11815.
Kaya, Emir Oğuz. Alparslan, Eda. Koç, . “Rubik Küp Nedir? Bir Rubik Küp, Kara Delikleri Aydınlatabilir mi?.” Edited by Eda Alparslan. Evrim Ağacı, May 28, 2022. https://evrimagaci.org/s/11815.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close