Renkli Görüşün Evrimi: Evrimde Türler Nasıl Yeni Özellikler Kazanır?
Renkli Görüşün Evrimi: Evrimde Türler Nasıl Yeni Özellikler Kazanır?

Bu yazının içerik özgünlüğü henüz kategorize edilmemiştir. Eğer merak ediyorsanız ve/veya belirtilmesini istiyorsanız, gözden geçirmemiz ve içerik özgünlüğünü belirlememiz için [email protected] üzerinden bize ulaşabilirsiniz.

Evrime dair halk arasına yayılmış yalanlardan birisi, evrimin sadece veya çoğu zaman "fonksiyon kaybettirici" yönde işlediğine dair bir argümandır. Bu görüşe göre evrim, en başından kusursuz bir şekilde yaratılmış olan türleri bozacak ve daha kusurlu hale getirecek biçimde işlemektedir. Elbette ki bunun hiçbir bilimsel tarafı yoktur ve bu argüman, evrimsel sürece dair bilgisizliği yansıtmaktadır. Ancak şu soru sorulabilir: Evrimde yeni bir fonksiyon nasıl kazanılır? Yani bir yeni bir fiziksel özellik veya yeni bir davranış, yani yeni bir "bilgi", genlere nasıl "işlenir"? 

Bu sorunun evrimle ilgili temel varsayımlar açısından hatasını buradaki soru-cevap yazımızda izah etmiş ve buradaki yazımızda da bir örneğini vermiştik. Bu yazıda ise bir diğer örnek vererek, evrimde yeni özelliklerin nasıl kazanıldığına bir bakış atacağız.

Gözün evrimi, evrimsel biyolojinin en iyi çalışılmış ve detayları ile ara basamakları en net biçimde ortaya konmuş evrimsel süreçlerden birisidir. Aşağıdaki görselde, bu basamaklar genel özellikleriyle gösterilmektedir:

Gözün evrimi
Kaynak: robomec

 

Bu yazımızda, gözün bir organ olarak evriminden ziyade, nasıl renkli görebildiğimizle ilgili ilginç bir evrimsel süreçten bahsedeceğiz. Çünkü bu, bir canlının yeni fonksiyonları nasıl kazandığına ve evrimin yepyeni fonksiyonlar kazandırabileceğine dair en harika örneklerden birisidir. Bu yazıda başrol oyuncumuz, "opsin" adı verilen bir gen ve protein grubu olacak. Örneğin farelerde bu genlerin DNA dizisi şu şekildedir:

 

Farelerde opsin gen sekansı
Kaynak: NCBI

 

Evrimsel süreçte, canlıların ışığı ve renkleri algılayabilmesi için evrimleşmiş çok sayıda opsin molekülü bulunuyor. Bunlar, Tip-1 ve Tip-2 şeklinde iki büyük kategori altında toplanıyorlar. Tip-1, bildiğimiz bütün canlılarda bulunsa da; Tip-2 sadece bazı canlı gruplarında bulunur. Bunların da birçok alt grubu bulunmaktadır.

Bizi ilgilendiren, Tip-2 opsinlerden olan C-opsinleri olarak bilinen bir gruptur. "Silli Opsinler" olarak da bilinen C-opsinleri, omurgalılarda da bulunan çok önemli bir gruptur. Bu moleküller, ışık sinyallerini sinir hücrelerindeki elektrik sinyallerine dönüştürürler.

Omurgalılarda 2 tip C-opsini bulunur: Lise biyolojisinden hatırlayacağınız üzere, koni ve çubuk opsinleri. Rodopsin olarak da bilinen çubuk opsinleri, düşük ışık koşullarında görmeye yarar ve renkleri kısıtlı miktarda ayırt edebilir. Koni opsinleri ise renkli görüşü mümkün kılan opsin molekülleridir.

Omurgalılarda bulunan opsinler 5 ana gruba ayrılır (bunlardan ilk 4'ü konidir, sonuncusu ise çubuk hücresidir):

  • Uzun Dalgaboyuna Duyarlı (LWS): 500-570 nanometre (nm) dalgaboyu aralığındaki yeşil, sarı ve kırmızı renklere duyarlıdır.
  • Kısa Dalgaboyuna Duyarlı - 1 (SWS1): 355-445 nm dalgaboyu aralığındaki mor renklere ve morötesine duyarlıdır.
  • Kısa Dalgaboyuna Duyarlı - 2 (SWS2): 400-470 nm dalgaboyu aralığındaki mor ve mavi renklere duyarlıdır. Sadece bazı memelilerde bulunur. 
  • Rodopsin Benzeri (Rh2): 480-530 nm dalgaboyu aralığındaki yeşil renge duyarlıdır. Memelilerde bulunmaz. 
  • Rodopsin Benzeri (Rh1): 500 nm dalgaboyu aralığındaki mavi ve yeşil renklere duyarlıdır.

Bizi bu yazı için ilgilendiren ise, bunlardan LWS olanıdır (kimi zaman orta uzunluktaki dalgaboyu da dahil edilerek LWS/MWS olarak da adlandırılabilmektedir). Farelerde, sıçanlarda, sincaplarda, tavşanlarda, keçilerde, yani kısaca memelilerin çoğunda bu LWS/MWS opsinini kodlayan tek bir adet opsin geni bulunur. Bu gen, yukarıdakine benzer şekilde, 510-550 nanometre dalgaboyunu algılayacak biçimde özelleşmiş proteinler üretmektedir. Bu saydığımız canlılar "dikromat"tır. Yani sadece 2 rengi görebilmektedirler (opsinlerinin durumuna göre o iki rengin hangileri olduğu değişebilmektedir). Biz insanlar ve yakın kuzenlerimizin birçoğu ise "trikromat"tır. Yani kırmızı, yeşil ve mavi renkleri ve bunların kombinasyonlarından oluşan 1-2.3 milyon farklı rengi algılayabilmekteyiz. Dikromatlarda ise bu sayı sadece 10,000 renk civarındadır.

"Neden onlar iki rengi görecek şekilde kalmışlar ki?" diye sorabilirsiniz. Aslında 2 rengi görebilmenin de çevreye bağlı olarak bazı avantajları vardır. Örneğin dikromat canlıların karanlıkta daha iyi görebildiğini gösteren çalışmalar var. Gerçekten de, canlılara baktığımızda, nokturnal olan, yani gece yaşayan canlılarda dikromasinin daha yaygın olduğunu görmekteyiz. Ancak evrimsel sürecin genel tarihine baktığımızda, dikromat atalardan, trikromat torunların evrimleştiği görülmektedir. Bu, "basitten gelişmişe" olan bir yolculuktan ziyade, ortam şartlarının değişmesine bağlı olarak, maymunlarda ve bazı diğer hayvanlarda daha fazla rengi ayırt etmenin öneminin artmasındandır. 

Dolayısıyla burada sorulması gereken asıl soru şudur: "İyi de, atası dikromat olan bir hayvan türü, nasıl olur da trikromat olacak biçimde evrimleşebilir?"

İşte bu sorunun cevabını, evrimsel biyoloji ve popülasyon genetiği harika bir şekilde verebilmektedir! Genlerimize bakan araştırmacılar, bizde ve yakın kuzenlerimizde, diktromat memelilerdeki MWS/LWS opsin geninin 2 kopyası olduğunu buldular. Bunlardan daha orta uzunluktaki dalgaboylarına duyarlı olana MWS deniyor; daha uzun dalgaboylarına hassas olana ise LWS. Aşağıda, bu iki proteinin neye benzediğini görebilirsiniz:

LWS ve MWS opsin proteinleri
Kaynak: MSU

 

MWS olanı 527 nanometre, yani yeşil rengi algılıyor. LWS ise 557 nanometre, yani kırmızı rengi... Bu, bizi trikromatik yapan en önemli iki molekül! Yalnız ilginç olan durum şu: Bu iki proteini kodlayan DNA dizisine baktığımızda, birbirinin %98 oranında birebir aynısı olduğu görülüyor! Üstelik biri, genomumuz içinde diğerinin hemen yanında yer alıyor. Dahası, her ikisinin bulunduğu pozisyon da, dikromat olan atalarımızdaki LWS'yi kodlayan genlerin pozisyonuna çok yakınlar! Yani o atasal gen, bir şekilde iki kopyaya kavuşmuş ve bunlardan biri ana görevini korurken, diğeri mutasyonlar ve seçilim yoluyla kademeli olarak değişmiş olmalı. Böylece, dikromatik bir atadan, trikromatik bir torun evrimleşebilir!

Bu nasıl oluyor? Gen çoklanması denen mutasyon tipiyle... Bu tip mutasyonda, genlerin okunması sırasında kimi zaman yanlışlıkla fazladan bir kopya üretiliyor. Ve genelde, bu ekstra kopya diğerinin hemen yanına yapıştırılıyor. Böylece aynı işlevi gören 2 gen oluşuyor. Buna, "kopya sayı varyantı" da denebiliyor ve popülasyon genetiği çerçevesinde, türlerin evrimini incelemek için kullanılan ana yöntemlerden birisi, bu kopyalanma olaylarına bakmak! Aşağıda bu durum gösteriliyor:

Gen çoklanması ve kopya sayı varyantı
Kaynak: Wikimedia Commons

 

Bu, eğer ki o genin ürettiği proteinin fazla üretilmesi sıkıntıysa, Doğal Seçilim tarafından elenip gidiyor. Zararlı mutasyonların genellikle popülasyondan hızla elendiğini, dolayısıyla evrime doğrudan etki etmeye fırsat bulamadıklarını hatırlayınız. Ancak çoğu zaman, bir genin birden fazla kopyasının oluşması pek bir etkiye neden olmuyor. Çünkü bir gen, genellikle sadece bir proteini kodluyor ve eğer ki o genin sayısı artacak olursa, genellikle olan tek şey o proteinin hücre içindeki miktarının artması oluyor. Eğer ki bu protein zararlı değilse, canlı hiçbir sorun yaşamadan hayatına o genin 2 veya daha fazla kopyasıyla devam ediyor. Ta ki bir mutasyon o ekstra gen veya genleri "susturana" veya "değiştirene" kadar.

Bu ikinci ve sonraki kopyalar, mutasyona çok daha açıktır. Çünkü halihazırda işlevsel olan bir kopya varken, ekstra kopyaların mutasyona uğramasında çoğu zaman sakınca yoktur. Doğal Seçilim, bu etkisiz mutasyonları elemediği için, o gen de kısmen daha hızlı bir şekilde değişme fırsatı bulur. Kimi zaman bu mutasyon, o ek genleri tamamen susturur. Susturulan kopya, kimi zaman "sahte-gen" veya çöp DNA'ya dönüşür. Kimi diğer zaman ise, mutasyonların yarattığı değişim, proteinin işlevini kademeli olarak farklılaştırmaktadır. İşte bizim opsin genimizde olan tam da budur! İkinci kopyada meydana gelen mutasyon, yepyeni bir rengi algılamamızı mümkün kıldı!

Bu, öylesine uydurulan bir hikaye değildir. Bu genin evrimi öylesine iyi çalışılmıştır ki, hangi mutasyonların dalgaboyu hassaslığını ne düzeyde değiştirdiği son derece net bir şekilde bilinmektedir. Yani hangi mutasyonlar meydana gelip de, 527 nanometreye duyarlı bir protein 557 nanometreye duyarlı olacak şekilde evrimleşti, bunu çok iyi biliyoruz. Şöyle ki, opsinin:

  • 180'inci pozisyonunda: Alanin, Serin'e,
  • • 277'inci pozisyonunda: Fenilalanin, Tirosin'e,
  • • 285'inci pozisyonunda: Alanin, Treyonin'e

dönüştü. Bunlardan ilki, proteinin hassas olduğu dalgaboyunu 7 nanometre, ikincisi 8 nanometre, üçüncüsü ise 15 nanometre maviye kaydırdı! Her bir mutasyonun protein üzerindeki etkisini bu kadar net biliyoruz! Bu hassasiyet noktasının kayması, ikinci kopyadan üretilen opsinin yepyeni bir rengi algılayabilmesini mümkün kıldı. 

Bu mutasyonun günümüzden 35 milyon yıl kadar önce, Eski Dünya Maymunları ile Yeni Dünya Maymunları'nın ayrılmasından sonra yaşandığı düşünülüyor. Biz Kuyruksuz Maymunlar da, Eski Dünya Maymunları'ndan trikromasiyi miras aldık. Yani şanslıyız diyebiliriz.

Sonuç olarak: Mutasyonlar, seçilim veya genel olarak evrim, illâ fonksiyon yitirici olmak zorunda değildir. Faydalı mutasyonların uzun vadede seçilimi, pek tabii yeni fonksiyonlar kazandırabilir. Üstelik bu, yeni bir fonksiyon kazanmanın sadece bir yoludur. Unutmayınız: Eğer fonksiyon kazandırıcı evrim örneği görmek istiyorsanız, vücudunuza bakmanız yeterlidir. Sahip olduğunuz istisnasız her özellik, bir zamanlar atalarımızdan birine fayda sağladığı için evrimleşmiş olan özelliklerdir: saç renkleri, parmak sayısı, organ biçimleri ve görevleri, davranışlar, üreme yöntemi, burun yapısı ve daha nicesi...


Kaynaklar ve İleri Okuma: 

  1. The Making of the Fittest, Sean B. Carroll, pp. 103-107
  2. Genetics
  3. Görsel: BigbellesMag!

Angry Birds Nasıl Oynanmalı?

Uykusuz Bir Beyni Müzikle Dinlendirmek...

Yazar

Çağrı Mert Bakırcı

Çağrı Mert Bakırcı

Yazar

Evrim Ağacı'nın kurucusu ve idari sorumlusudur. Popüler bilim yazarı ve anlatıcısıdır. Doktorasını Texas Tech Üniversitesi'nden almıştır. Araştırma konuları evrimsel robotik, yapay zeka ve teorik/matematiksel evrimdir.

Konuyla Alakalı İçerikler
  • Anasayfa
  • Gece Modu

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim