Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Kepler Yasaları Nedir? Kepler'in Gezegensel Hareket Yasaları Neyi Açıklar?

5 dakika
15,404
Kepler Yasaları Nedir? Kepler'in Gezegensel Hareket Yasaları Neyi Açıklar?
Tüm Reklamları Kapat

Kepler yasaları, Kepler'in 17. yüzyılın başlarında ortaya attığı, gezegenlerin hareketini açıklayan üç ayrı kolda incelenen yasalardır. Bu yasalar, birlikte çalıştığı bilim insanı Tycho Brahe'den kalan verilerden yola çıkarak geliştirilmiştir ve hepsi oldukça temel gözlemsel verilere dayanmaktadır.

Tarihçe

Yasalara geçmeden önce, Kepler'in yaşadığı dönemin atmosferini ve onu bu devrim niteliğindeki başarıya götüren düşünceleri incelemek gerekiyor. Kepler'in yaptığı çalışmalar, yazının başında da dediğimiz gibi Tycho Brahe'nin uzun yıllar yaptığı gözlemlerin verilerine dayanıyordu. Tycho, Avrupa'nın en iyi üniversitelerinden birinde eğitim almış, daha sonra da kendi gözlem evinde (Uraniborg) yaptığı gözlemler sonucunda, Antik yunan görüşü olan Dünya merkezli evren modelinin doğru olmadığına ikna olmuş bir bilim insanıydı.

Tycho, yaşadığı bazı siyasi sorunlardan dolayı Prag'a taşınmak zorunda kaldı. Burası, Kepler ile tanışacağı ve onunla beraber çalışmalar yapacağı yerdi. Tycho'nun Kepler'e verdiği ilk görev, çembersel yörüngeye sahip olduğu düşünülen gezegenlerin konumlarının öngörülemezliğini çözmekti. Kepler ile bir yıl boyunca çalışan Tycho, bir yılın sonunda hayatını kaybetti. Ancak Tycho'nun yaptığı yüksek kalitedeki ve düşük hata payına sahip gözlemlerin verileri sayesinde Kepler, çok büyük başarılara imza atacaktı.

Tüm Reklamları Kapat

Kepler'in yapacağı bu çalışmalar onun tam 29 yılını aldı. Ancak Kepler, tüm bu çalışmanın sonucunda bir devrime imza attı ve gezegenlerin hareketini çok başarılı şekilde açıkladı. Ta ki yüzyıllar sonra Einstein gelip, eksikleri kapatana kadar.

Kepler Yasaları

Kepler yasaları, yörünge kinematikleri üzerine oldukça açıklayıcıydı. Birçok gök cisminin hareketini hala sorunsuz bir biçimde açıklayabilir. Fakat Merkür probleminden de biliyoruz ki, bazı durumlarda görelilik etkileri baskın hale geliyor ve Kepler yasaları kullanılamaz oluyor.

Kepler'in Birinci Yasası

Kepler'in Birinci Yasası şunu söyler: Her gezegen, odak noktalarından birinde Güneş’in bulunduğu eliptik yörüngelerde dolanır.

Kepler, Güneş merkezli evren modelini çok önceden kabul etmişti. Kopernik, bu modeli ortaya attığında, gezegenlerin çembersel yörüngelerde dolaştığını düşünmüştü. Ancak Kepler, Tycho'nun gözlem verileri sayesinde, bu düşünceyi terk etmişti.

Tüm Reklamları Kapat

Kepler yasalarının birincisini anlamak için, öncelikle elipsin geometrisini incelemek gerekiyor. Elips, basitçe basık bir çemberdir.

İki raptiye etrafına bir ip dolayıp, bu ipi sürekli gergin tutarak bir şekil çizmeye çalışın. Elde ettiğiniz şekil, bir elips olacaktır. Eğer bu iki raptiyeyi birbirine yaklaştırırsanız, elde edeceğiniz şekil giderek çembere yakınsar. Eğer tek raptiye kullanırsanız (yani iki raptiye çakışırsa), o zaman bir çember çizersiniz. Bu raptiyelere, elipsin "odak noktaları" denir. Gezegenler de odaklarından biri Güneş olan eliptik yörüngelerde dönerler.
İki raptiye etrafına bir ip dolayıp, bu ipi sürekli gergin tutarak bir şekil çizmeye çalışın. Elde ettiğiniz şekil, bir elips olacaktır. Eğer bu iki raptiyeyi birbirine yaklaştırırsanız, elde edeceğiniz şekil giderek çembere yakınsar. Eğer tek raptiye kullanırsanız (yani iki raptiye çakışırsa), o zaman bir çember çizersiniz. Bu raptiyelere, elipsin "odak noktaları" denir. Gezegenler de odaklarından biri Güneş olan eliptik yörüngelerde dönerler.

Modelde de gördüğümüz gibi, bir elipsi, iki toplu iğneyi bir kağıda sabitleyip ardından bu iğnelere bir ip bağlayarak çizebiliriz. Burada iki şey görebiliriz. Birincisi, toplu iğneler (odaklar) arası uzaklık arttıkça, elipsin basıklığı artar. İkincisi ise, toplam ipin uzunluğu hep eşit olduğundan, elips üzerindeki herhangi bir noktaya odaklardan çizilen iki doğrunun uzunluklarının toplamı her zaman eşit olmalıdır.

Kepler'in birinci yasasıyla bize söylediği şey budur. Gezegenler eliptik yörüngelerde gezer ve elipsin odaklarından birinde Güneş bulunur. Ancak, biz yine de diğer odağın neresi olduğunu bulabiliriz. Çünkü iki odak, merkeze göre simetriktir.

Kepler'in İkinci Yasası

 Kepler'in İkinci Yasası şunu söyler: Güneş'ten herhangi bir gezegene çizilen doğru, eşit zamanlarda eşit alanlar tarar.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

Kepler yasalarının ikincisini kolay şekilde anlamak için, bir model kullanabiliriz.

Yukarıdaki modelde Güneş etrafında dönen bir cismin eşit sürede kat ettiği mesafede taradığı alan her zaman eşittir. Tabii ki bunun sağlanabilmesi için, bu alan ne kadar ince-uzun ise (görselde solda taranan alanlar buna örnektir), gezegen de o kadar yavaş hareket eder. Taranan alan ne kadar şişman ve genişse (görselde sağdaki alan buna örnektir), gezegen de o kadar hızlı hareket eder. Yani gezegen, Güneş'e yaklaştıkça hızlanır, uzaklaştıkça yavaşlar. Bu bilgiden yola çıkan Kepler, "Gezegenler, yörüngelerinde eşit zamanda eşit alanlar tarar." yorumunu yapmıştır.

Kepler'in Üçüncü Yasası

Kepler'in Üçüncü Yasası şunu söyler: Gezegenin yörünge periyodunun karesi, elipsin yarı büyük eksen uzunluğunun kübüne eşittir.

Yörünge yarı-büyük ekseni (orbital semimajor axis, a), yörünge periyodu (orbital period, p), yörünge basıklığı (orbital eccentricity, e).
Yörünge yarı-büyük ekseni (orbital semimajor axis, a), yörünge periyodu (orbital period, p), yörünge basıklığı (orbital eccentricity, e).

Yukarıdaki tabloda, gezegenlerin yarı büyük eksen uzunluğunu ve periyodunu görmekteyiz. En sağdaki sütunda da, P2 /a3P^2 / a^3 oranını görebiliriz. Tablodan da anlaşılabileceği gibi, sonuçlar birbirine çok yakın olsa da aynı değildir. Bunun sebebi ise, formülün gerçek halinin aşağıdaki gibi bir f(x)f(x) değişkenine eşit olmasıdır. Bunun sebebine ise, "ek bilgiler" kısmında değineceğiz.

P2 /a3 =f(x)\Large P^2 / a^3 = f(x)

Kepler yasaları, içinde bulunduğu dönem açısından oldukça önemliydi çünkü bilinen evren modeli, gözlemleri yeterince iyi açıklamıyordu ve oldukça karışıktı. Kepler, ortaya attığı bu hem anlaması kolay olan hem de gezegenlerin hareketini oldukça başarılı şekilde açıklayan yasalarıyla, büyük bir devrime imza attı.

Tüm Reklamları Kapat

Kepler Yasaları Hakkında Ek Bilgiler

Kepler yasalarının üçüncüsünde gördüğümüz P2 / a3 oranı basitçe nasıl elde edilebilir?

İşleme, çekim kuvvetini merkezcil kuvvete eşitleyerek başlayacağız.

GMmr2=mv2r\Large G\frac{Mm}{r^2}=\frac{mv^2}{r}

Tüm Reklamları Kapat

Ardından, gerekli sadeleştirmeleri yaparak devam edelim.

GMr=v2\Large G\frac{M}{r}=v^2

Çizgisel hızı farklı bir şekilde ifade edelim. Burada aslında hızı basitçe, yol/zaman ifadesi olarak yazıyoruz.

v=2πrT\Large v=\frac{2\pi r}{T}

Tüm Reklamları Kapat

Agora Bilim Pazarı
Tavan Arasındaki Buda

Japonya’dan San Francisco’ya giden gemiye bindiler hep birlikte, ellerinde kocalarının birbirinden yakışıklı fotoğraflarıyla. Gelindi onlar; yabancı topraklarda, dükkan, bağ bahçe sahibi kocalarıyla kuracakları refah yaşamın hayaline kapıldılar -çünkü onlara bunun sözü verilmişti. Sonra kocalarını gördüler; ilk şoku yaşadılar, ilk geceyi atlattılar. Müstakbel kocalarının onlara yalan söylediğini, evlerinin hanımı olmayacaklarını öğrendiler; çok ama çok çalıştılar, tarlalarda iki büklüm mahsül topladılar, beyaz tenli uzun boylu kadınların yerlerini sildiler, çamaşırlarını yıkadılar, yemeklerini yaptılar, erkeklerine hizmet ettiler. Çocuk doğurdular; bir, iki, beş, on. O çocuklar büyüyüp de kimliklerini reddettiğinde üzülmemeye çalıştılar. Yeni topraklar sonunda memleketleri oldu. Ve savaş gelip çattı bir gün, yeni memleketlerinde “düşman” oldular.

Julie Otsuka’nın 2011 National Book Award finalisti romanı TAVAN ARASINDAKİ BUDA yüz yıl kadar önce gemiyle Japonya’dan San Francisco’ya “fotoğrafla eşlenmiş gelinler” olarak getirtilen bir grup genç kadının yürek burkan öyküsünü, şiirsel bir etkileyicilik ve hiddetle aktarıyor.

Devamını Göster
₺210.00
Tavan Arasındaki Buda
  • Dış Sitelerde Paylaş

Yerine yazdığımızda, karşımıza aşağıdaki gibi bir ifade gelecek.

GMr=4π2r2T2\Large G\frac{M}{r}=\frac{4\pi^2 r^2}{T^2}

Gerekli düzenlemeleri yaptığımızda, Kepler'in üçüncü yasasında karışımıza çıkan ifadeyi elde etmiş olacağız.

r3T2=GM4π2\Large \frac{r^3}{T^2}=\frac{GM}{4\pi^2}

Burada denklemin sağ tarafındaki ifadenin kk gibi bir sabite eşit olduğuna dikkat edin. Aslında burada MM ifadesi (M+m)(M+m)'dir. Fakat gezegenlerin kütlesi, Güneş'in kütlesinin yanında bir hayli ihmal edilebilir kalır. Yine de tabloda en sağda verilen değerlerdeki gibi, ufak farklılıklar görmek mümkün.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
53
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Bilim Budur! 16
  • Tebrikler! 6
  • Mmm... Çok sapyoseksüel! 2
  • Muhteşem! 1
  • Merak Uyandırıcı! 1
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • E. Chaisson. (2013). Astronomy Today. ISBN: 9780321901675. Yayınevi: Addison-Wesley.
  • A. Hobson. (1998). Physics: Concepts And Connections. ISBN: 9780130953810. Yayınevi: Prentice Hall.
  • D. L. Goodstein. (2013). Feynman’ın Kayıp Dersi. ISBN: 9786051067230.
  • C. Yıldırım. (1995). Bilimin Öncüleri. ISBN: 9789754030143. Yayınevi: TÜBİTAK Popüler Bilim Kitapları.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 20/12/2024 14:11:33 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/12862

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Geometri
İyi
Coğrafya
Asteroid
Komplo Teorisi
Yatay Gen Transferi
Klinik Mikrobiyoloji
Kitlesel Yok Oluş
Yılan
Kıl
Sürüngen
Cinsellik
Zehirli Mantar
Müfredat
Bilim İnsanı
Goril
Meyve
Göğüs
Normal Doğum
Factchecking
Kuyruksuz Maymun
Çocuklar
Neandertal
Yapay Zeka
Obezite
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
E. C. Karanfil, et al. Kepler Yasaları Nedir? Kepler'in Gezegensel Hareket Yasaları Neyi Açıklar?. (19 Aralık 2022). Alındığı Tarih: 20 Aralık 2024. Alındığı Yer: https://evrimagaci.org/s/12862
Karanfil, E. C., Kayalı, Ö. (2022, December 19). Kepler Yasaları Nedir? Kepler'in Gezegensel Hareket Yasaları Neyi Açıklar?. Evrim Ağacı. Retrieved December 20, 2024. from https://evrimagaci.org/s/12862
E. C. Karanfil, et al. “Kepler Yasaları Nedir? Kepler'in Gezegensel Hareket Yasaları Neyi Açıklar?.” Edited by Ögetay Kayalı. Evrim Ağacı, 19 Dec. 2022, https://evrimagaci.org/s/12862.
Karanfil, Ege Can. Kayalı, Ögetay. “Kepler Yasaları Nedir? Kepler'in Gezegensel Hareket Yasaları Neyi Açıklar?.” Edited by Ögetay Kayalı. Evrim Ağacı, December 19, 2022. https://evrimagaci.org/s/12862.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close