Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Kar Tanesi Nasıl Oluşur? Kar Taneleri Neden Hep Altı Kenarlıdır?

Fizik ve Kimya, Kar Tanelerinin "Eşsiz" Olduğu İddia Edilen Geometrisini Açıklayabilir!

Kar Tanesi Nasıl Oluşur? Kar Taneleri Neden Hep Altı Kenarlıdır?
6 dakika
20,404
Tüm Reklamları Kapat

Bütün kar tanelerinin altı kenarı olduğu herkesçe bilinen bir gerçektir. Google’ınsa bugüne kadar çizdiği temalı logolarında (Doodle’larda) en az iki kez sekiz kenarlı kar tanesi kullanma nedeni ise merak konusudur. Bilim insanlarının bütün kar tanelerinin altı kenarı olduğundan nasıl bu kadar emin oldukları ise bir başka merak konusudur.

Bütün kar tanelerini inceledik mi? Tabii ki hayır, ancak bu durumun açıklaması iki sözcükte yatmaktadır: hidrojen bağı. Hidrojen bağının moleküller arası kuvveti sayesinde bütün kar tanelerinin altı kenarı vardır, ayrıca bildiğimiz şekliyle yaşamı hidrojen bağı mümkün kılmaktadır. Bu nedenle önemli bir bağdır.

Tüm Reklamları Kapat

Bununla birlikte su moleküllerinin yapısını anlamadan hidrojen bağını tam olarak anlayamazsınız. Su, çok basit bir molekül gibi görünür ve bir oksijen atomu ile ona bağlı iki hidrojen atomundan oluşur. Hidrojen atomları, oksijen atomuna birbirinden tam olarak 104,5 derece uzaklıkta olacak şekilde bağlanır (1). Neden tam bu açı?

Bir oksijen atomu toplam sekiz elektrona sahiptir. Bunlardan ikisi, atomun çekirdeğine en yakın kabuktaki mevcut noktaları kaplar. Kalan altı elektron atomun en dıştaki (değerlik) elektron kabuğuna gönderilir. Ancak bu kabuk aslında sekiz elektron alabileceğinden iki nokta boş kalır. Bir hidrojen atomu ise tek elektron kabuğunda bir adet elektrona sahiptir, bu kabukta iki elektron için yer olduğundan bir yer boş kalır.

Tüm Reklamları Kapat

Hidrojen ve Oksijen Atomları
Hidrojen ve Oksijen Atomları

Oksijenin iki boş yeri, hidrojenin de bir boş yeri olduğu için oksijen, boş yerlerini iki hidrojen atomuyla paylaşabilir. Her iki hidrojen atomu tek elektronlarını oksijenle paylaşır, oksijen de her bir hidrojen atomuyla bir elektron paylaşır. Bununla birlikte oksijenin kalan dört elektronu bu paylaşım düzeninin dışında kalır. Elektronlar çiftler halinde bulunmayı tercih ettiklerinden paylaşılmayan bu dört elektron iki çift oluşturur.

Yalnız başına duran bu iki çift ile her biri bir hidrojenle paylaşılan diğer iki elektron, su molekülünün dörtyüzlü (tetrahedron) (üçgen tabanlı piramit) şeklini oluşturur, bu dörtyüzlüde oksijen çekirdeğinden çıkan dört bağlantı bulunur. Bu bağlantıların ikisi, her biri iki elektron (elektron çiftleri) içeren elektron bulutlarıdır, diğer iki bağlantı ise oksijen ve hidrojen yörüngelerinde birlikte dolanan iki elektronlu hidrojen atomlarıdır. Düzgün bir dörtyüzlüde bütün bağlantılar birbirinden 109,5 derece uzaklıkta olmalıdır. Ancak su molekülünde hidrojen atomları birbirinden 104,5 derece uzaklıktadır, çünkü çift halindeki iki elektron bulutu daha fazla yere sahip olmak ister ve hidrojen atomlarıyla paylaşılan elektronları birbirine daha yakın olmaya zorlar.

Böylece hidrojen ve oksijenin kovalent bir bağ oluşturduğunu, yani elektronlarını paylaştıklarını öğrenmiş olduk. Ama ayrıca oksijenin o elektronuna daha sıkı tutunmak istediğini, yani paylaşımın tam eşit olmadığını da söylemeliyiz. Oksijen, elektronuna daha kuvvetli tutunur ve negatif yükü hidrojenlerden uzaklaştırıp kendisine doğru çeker. Bunun sonucunda hafifçe negatif bir oksijen ve hafifçe pozitif hidrojenler oluşur.

Evrim Ağacı'ndan Mesaj

Her hidrojenle bağlandığı yerin tam karşısında olmak üzere, oksijenin negatif yüklendiği iki alan vardır. Su molekülleri, bu hafif yüklü alanları kullanarak diğer moleküllerle oldukça kuvvetli bir bağ oluşturur, bu bağa hidrojen bağı denir. Hidrojen içeren her molekül, diğer moleküllerle bu tür bir bağ oluşturamazken böyle eşit olmayan bir paylaşım içindeki hidrojen içeren moleküller bu bağı oluşturabilir.

Su moleküllerinin diğer su moleküllerine bağlantısında, oksijenin hafifçe negatif iki alanından her biri diğer su molekülündeki hafifçe pozitif bir hidrojenle bağlanır. Hafifçe yüklü dört alanın hepsi hidrojen bağıyla diğer su moleküllerine bağlandığında bir dörtyüzlü (dört yüzlü piramit) şekli ortaya çıkar.

Bu bağlar suyu olağandışı bir madde yapar. Sıcaklık düşüp de su katılaşmaya başladığında hidrojen bağı önemini göstermeye başlar ve buz kristallerinin şeklini belirler. Her su molekülünün başka dört su molekülüyle dörtyüzlü bir düzende bağlandığını öğrenmiş oldunuz.

Su donarken bu dörtyüzlüler birbirine yaklaşır ve altı halkalı ve altıgen biçimli bir yapıda kristalleşir. Bu yapının nasıl oluştuğunu görmek için görsele bakınız. Altıgenin her noktası, bir oksijen atomu; her kenarı, bir oksijene bağlı bir hidrojendir. Su donma sıcaklığına yaklaşırken su molekülleri bu dörtyüzlü düzende kristalleşmeye devam eder.

Fakat su, diğer maddelerden farklı bir şey yapar. Donmaya yaklaştıkça büzülmeye devam etmek yerine, yaklaşık 4 ile 0 santigrat derece arasında, moleküllerin hareketi soğumayla birlikte yavaşladığı ve hidrojen bağları, molekülleri birbirinden olabildiğince uzaklaştırdığı için, yavaşça genişler. Bu, dirsekleri bükük insanların el ele tutuştuğu ve sonra yavaşça birbirinden en uzak mesafede olacak şekilde kollarını tümüyle uzatarak düzleştirdiği bir halkaya benzer. Su molekülleri bunu yaptığında altıgen yapı genişleyerek daha da büyük bir altıgen yapıya dönüşür.

Tüm Reklamları Kapat

Bu sürecin sonunda altı kenarlı kar tanesi oluşur; yani büyük, muhteşem bir buz kristali. Buz kristalleri, mineral kaya kristallerine benzer. Gördüğünüz makroskobik (büyük) şekil, mikroskobik moleküler kristal yapı tarafından belirlenir. Buz altıgen bir kristal yapıya sahiptir, kar tanesi de altıgen bir yapıya sahiptir. Sodyum klorür, diğer adıyla yemek tuzu, kübik bir moleküler yapıya sahiptir, yemeğinize serptiğiniz tuz kristalleri kübik bir şekle sahiptir:

Hidrojen bağının altı kenarlı kar tanelerini oluşturması ilginçtir (Duyuyor musun Google?), ancak bu bağın güzel kar tanelerinden çok daha önemli sonuçları vardır. Suyun sıvıdan gaza dönüşmesi sırasında bu hidrojen bağların kırılması çok fazla ısı gerektirir, bu nedenle suyun kaynama noktası benzer diğer moleküllerinkinden çok daha yüksektir. Benzer molekülleri baz alırsak, suyun kaynama noktası, 100 santigrat derece (212 fahrenhayt derece) yerine yaklaşık -80 santigrat derece (-176 fahrenhayt derece) olmalıydı.

Sonra buzun yüzdüğü gerçeği de var ki bu, suyun katın hâlinin sıvı hâlinden daha az yoğun olduğu anlamına gelir. Bir maddenin katı hâlinin su hâlinden daha az yoğun olması oldukça olağandışıdır. Fakat sıcaklık 0 santigrat dereceye yaklaşırken, bu hidrojen bağlar suyu oldukça açık, altıgen bir kristal yapıya bürünmeye zorladığından moleküller, daha yüksek sıcaklıklardaki kadar birbirine yakın bir durumda olmaz.

El ele tutuşan ve kollarını dümdüz uzatarak birbirinden mümkün olduğunca uzakta duran insanları düşününüz. Bu insanlar, birbirine çarparak dans etmeye (slam dancing yapmaya) başlarlarsa tuttukları elleri ayrılır, böylece birbirine daha çok yaklaşabilirler. Sıcaklık 4 santigrat derecenin üzerine çıktığında su molekülleri de benzer bir davranış gösterir. Buz eridiğinde hidrojen bağların bir kısmı kırılır, böylece su molekülleri birbirine yaklaşabilir. Buzdaki birbirinden uzak su molekülleri, sıvı suyun birbirine yakın moleküllerinden daha az yoğun bir madde oluşturur, dolayısıyla buz, sıvı suda yüzer.

Suyun bu özelliği, Dünya’daki yaşamın ayrılmaz bir parçasıdır. Bir tatlı su gölü donmaya başladığında buz, suyun üzerinde yüzerek alttaki suyu yalıtır (izole eder) ve suyun donmasını engeller. Göldeki balıklar, bitkiler ve diğer canlılar koruyucu ve yalıtıcı buz tabakasının altında yaşamaya devam eder. Eğer buz batacak olsaydı, bu mavi gezegen 4,5 milyar yıllık ömründeki derin donma süreleri boyunca buzlaşmış ve yaşanması mümkün olmayan bir yere dönüşürdü. Oysa buzun yüzmesi, Dünya’nın okyanuslarında yaşamın geliştiği mükemmel bir kuvöz olmasını sağlamıştır. Ve bütün bunların hepsi, oksijenin elektronlarına biraz daha fazla tutunmak istemesinden kaynaklanır.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
18
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 15
  • Muhteşem! 6
  • Bilim Budur! 4
  • Mmm... Çok sapyoseksüel! 3
  • İnanılmaz 3
  • Merak Uyandırıcı! 1
  • Üzücü! 1
  • Güldürdü 0
  • Umut Verici! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • R. H. Petrucci, et al. (2002). General Chemistry: Principles And Modern Application. Yayınevi: Pearson.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 19/03/2024 14:22:22 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/4133

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Bellek
Genel Görelilik
Maske Takmak
İklim Değişikliği
Bilim İnsanları
Kök Hücre
Antibiyotik
Mers
Araştırmacılar
Nükleer Enerji
Evrim Ağacı
Böcek Bilimi
Çekirdek
Siyah
Avcı
Temel
Gıda Güvenliği
Uterus
Çevre
Amerika Birleşik Devletleri
Çiçek
Film
Karar Verme
Kuş
Demir
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün bilimseverlerle ne paylaşmak istersin?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Ş. Ölez, et al. Kar Tanesi Nasıl Oluşur? Kar Taneleri Neden Hep Altı Kenarlıdır?. (12 Ocak 2016). Alındığı Tarih: 19 Mart 2024. Alındığı Yer: https://evrimagaci.org/s/4133
Ölez, Ş., Özdil, A. Ş. (2016, January 12). Kar Tanesi Nasıl Oluşur? Kar Taneleri Neden Hep Altı Kenarlıdır?. Evrim Ağacı. Retrieved March 19, 2024. from https://evrimagaci.org/s/4133
Ş. Ölez, et al. “Kar Tanesi Nasıl Oluşur? Kar Taneleri Neden Hep Altı Kenarlıdır?.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, 12 Jan. 2016, https://evrimagaci.org/s/4133.
Ölez, Şule. Özdil, Ayşegül Şenyiğit. “Kar Tanesi Nasıl Oluşur? Kar Taneleri Neden Hep Altı Kenarlıdır?.” Edited by Ayşegül Şenyiğit Özdil. Evrim Ağacı, January 12, 2016. https://evrimagaci.org/s/4133.
ve seni takip ediyor

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close