Geometri Bilmeyen Giremez: İnsanoğlunun İçgüdüsünün Ürünü Geometri!
Karşının komşuya oranını hesaplamadan duramıyoruz.
Anlamı içine en iyi gizlenmiş kelimelerden biri de “geometri”dir. Bilim terimlerine yerleşmiş çoğu kelime gibi Yunanca’dan alınan bu kelimenin tam anlamını bilmek için Yunanca konuşmaya gerek yok. Okuldan, gündelik yaşamdan tanıdığımız iki kelime gizlidir bu kelimede: “Yer, dünya, yeryüzü” anlamında “geo” ve “ölçmek” anlamında “metri”. Geometri, aslında dünyayı ölçmek demektir.
Bugün, üçgenlerle, daire ve prizmalarla öğrencilerin sıkça başını ağrıtan geometrinin ortaya çıkışı, insanoğlunun yaşadığı yeri ölçerek onu tanımak ve ona hükmetmek isteme içgüdüsü sayesindedir.
Yürüyeceği mesafeyi, ekeceği tarlanın alanını, yaşayacağı kulübenin hacmini hesaplamak isteyen insanoğlu, bu hesaplamaları yapmanın hayatını kolaylaştırdığını görmüş; mümkün olduğunca hayatının her yerinde bu hesaplamaları yapmaya çalışmıştır.
Ancak, geometri her ne kadar yeryüzünü ölçme anlamına geliyorsa da, geometri dendiğinde akla büyük bir küre olan dünyamız değil; küçük üçgenler, doğrular, eğriler, kareler, küpler ve daha küçük küreler gelir. Doğrusu, geometri tarihte bir yerde asıl işini harita bilimine ve coğrafyaya bırakmıştır. Ancak onlara yardım etmeye devam etmektedir.
Her terimi Yunanlardan alacak değiliz. Bazı kelimeleri de Farsçadan almaktayız. Planlama anlamındaki “Nirengi” bu kelimelerden biri. Günlük hayatta da bazen doğru, bazen yanlış, “çıkış, başlangıç, orijin, referans noktası” anlamında kullandığımız “nirengi noktası” terimi de özünde teknik bir terim olup “üçgenleme” noktası şeklinde Türkçeye çevrilebilir.
Bu üçgenleme nedir? Ne işe yarar? Geometriyle bir ilgisi olduğu ortada. Ama acaba hangi geometriyle?
Bazılarımız kesinlikle uçak ve uydu teknolojisinden önce dünya haritalarının nasıl çizildiğini merak etmiştir. Ancak, konumuz haritaların doğuşu, çizim teknikleri değil. Konumuz, aslında eski insanların inanılmaz zekaları ve bu inanılmaz zeki insanların geometriyi kullanarak gökyüzüne çıkmadan yapabildikleri. Bilim ve sanat insanların kanadıdır.
Öncelikle, eski insanların hassas haritalara gerek duymadıklarını belirtmek gerekir. Onlar için gerekli olan şey kullanışlılıktı. Haritacılar hassas çalışmıyorlardı. Hem yeterli teknolojileri yoktu, hem de bir manada fazla hassasiyet gereksizdi. Haritaları kullanacak olan tüccarların, komutanların veya denizcilerin çok da hassas haritalara ihtiyaçlarının olmadığı bir gerçek. İki şehir veya iki ada veya iki koy arasındaki mesafeyi, savaş meydanının alanını ve basit coğrafik özelliklerini yaklaşık olarak bilmeleri yeterliydi. Bu nedenle haritacılık teknoloji ve ihtiyaç nedeniyle yavaş gelişen bir bilim kolu olmuştur.
Büyüklerimiz “aklın yolu birdir” demişler. Bu laf, haritalandırma işinde gerçekten anlam buluyor. Geometrinin icat edilmesinin amacı dünyayı ölçmektir. Bunu aynı anda Dünya’nın birçok yerinde, kalem tutan birçok toplumun çeşitli düzeylerde kullanmaya başladığını tahmin etmek zor değil. Uzak mesafeleri ve yükseklikleri ölçmede temel teknik olan üçgenlerin ve açıların kullanılması neredeyse Eski Dünya’nın her tarafında yaygındı. Thales, MÖ 6. yüzyılda, Mısır’da kendi gölgesini ve piramit gölgesini ölçerek piramitlerin yüksekliklerini bulmuştu. Bunu yaparken benzer üçgenler yöntemini kullanmıştı. Mısırlıların, Thales’ten 1000 yıl önce bu ölçüm tekniğini bildiklerini, meşhur Rhind Matematik Papirüslerinden (Problem 56) biliyoruz. Mısırlıların ve Babillilerin matematikte ve geometride ileri oldukları bilinmekte. Önce Yunanlar, daha sonra Araplar sayesinde kullanımı yayılan üçgenleme teknikleri, zamanla Avrupa’da unutulmuştur. Ancak 11. Yüzyıl başlarında Avrupalılar tarafından tekrar canlandırılmıştır. Öte yandan Asya’da Çinliler ise matematik ve geometri bilgilerini haritalandırmada uzun süredir kullanmaktaydılar. Örneğin, üçgenleme teknikleri üzerinde çalışan Çinli matematikçi ve haritacı Jiyan (224–271), haritalandıracağı alanı kareler ve üçgenlere bölerek işaretleyerek grid metodunu kullanan, bilinen ilk isimdir.
Bir kıyının haritasını çizmek istersek, ya gemi ile bütün kıyıları gezip haritasını çıkarmak gerekir ya da antik İzmirli hayali geometricimiz gibi oturduğumuz yerden sadece matematik kullanmamız yeterlidir. Sadece bir koyun veya körfezin geometri kullanarak haritasını çıkarmak bir günümüzü alacaktır. Ülke boyunca bütün kıyıların haritasını çıkarmak bütün ömrümüzü alabilir. Ancak haritalar çeşitli ülkelerdeki haritacıların kümülatif çalışmaları sonucunda zamanla oluşturulmuştur.
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
Eski insanların matematiği kullanarak neler yapabildiklerini görmek gerçekten büyüleyici ve hayrete düşürücü. Matematiğin ve geometrinin icat edilmesi, insan zekasının bir ürünü olması, asla ve asla önemini yitirmemesi insanlığımızla gurur duyabileceğimiz belki de en önemli şeylerden biri. En yakın kuyruksuz maymun kuzenlerimizle aramızdaki minicik farkın matematiğe olanak sağlaması, işin daha da ürpertici kısmı belki de. Geometrinin yardımıyla denizciliğin ve daha sonra astronominin ve astrometrinin gelişmesi, coğrafi keşifler geometrinin en şüphesiz ki en pratik getirisidir. İlk astronomlar çok benzer üçgenleme hesaplarıyla gökcisimlerinin yerlerini de belirleyebildiler. Evren’deki yerimizi bulmamızda geometriden faydalandılar. Tam bu noktada geometri, artık yeryüzüne ait bir bilim olmaktan çıkıp evrenin her yerinde uygulayabildiğimiz bir araç oldu.
Geometriyi bütünüyle Dünya’nın tamamına uygulayan ilk isim ise M.Ö 234-194 yılları arasında Kireneli Eratosten (Erastosthenes) olmuştur. Erastosten’in lakabı Beta’ydı. Yunan alfabesinin ikinci harfiyle sesleniyorlardı ona. Çünkü o hiç bir bilim dalında en iyi değildi. Ancak tüm bilimlerde en iyi ikinciydi. Pentathlos (beş yarışmayı da kazanan) da bir diğer lakabıydı. Coğrafya (geographia = yerküre yazımı) kelimesini neredeyse tüm dillere armağan eden kişidir. İcat etmekle kalmayıp modern anlamda ilk coğrafyacı da olmuştur.
Eratosten, döneminin tam bir bilim insanıydı. Belki de en iyisiydi. Dünya hakkındaki efsanevi açıklamalar ona yetmiyor; dünya hakkında daha fazla şey öğrenmek için çabalıyordu. Rönesans’tan yüzyıllar önce doğmuş bir Rönesans adamı gibiydi. En büyük avantajı, zengin Ortadoğu ve Yunan kültürünün ve biliminin içine doğmuş olmasıdır. Tabii ki döneminin çoğu bilim insanı gibi o da bir polimattı. Antik çağlarda bilim henüz ayrıntılı bir şekilde ayrılmamıştı. Çoğu bilim insanı, farkında olmadan birçok bilim dalıyla uğraşmaktaydı. Polimat, yine Yunanca’dan diğer dillere geçen bir kelimedir ve birden fazla bilim ile uğraşan bu kişilere verilen bir isimdir. Polimat kelimesi için bizim kullandığımız Hezarfen (farsça “bin bilim sahibi”) lakabının tam karşılığı denilebilir. “Hezarfen” Eratosten, matematik, coğrafya, haritacılık, astronomi ve tarih ile ilgilenirdi. Aynı zamanda şair ve müzisyendi.
Enlem – boylam sistemini icat ederek bunu, hazırladığı Dünya haritasında kullanmıştır. Artık yıl sistemini öne sürerek Güneş takvimlerindeki kaymayı da çözmeye çalışmıştır.
Ancak Eratosten, daha çok, o dönemler için imkansız gibi görünen bir keşfi yaptığı için ismini binlerce yıl sonraya bırakabilmiştir: Dünya’nın çevresini ölçmek.
Sanılanın aksine, o dönemlerde Dünya’nın yuvarlaklığı pek tartışma konusu değildi. İnsanlığın büyük çoğunluğu Dünya’nın bir küre şeklinde olduğunu biliyordu. Ay tutulmasına neden olan şeyin yuvarlak Dünya’nın yuvarlak gölgesi olduğunu fark etmek için polimat olmaya gerek yoktu. Bu kolay bir çıkarımdı. Eratosten, Dünya’nın çevresini ölçebilirse, Ay’ın ve hatta Güneş’in çevresini de ölçebileceğini, hatta Güneş ile Dünya arasındaki mesafeyi de hesaplayabileceğini düşünüyordu.
Eratosten, Dünya’nın çevresini ölçmek için ekvator üzerinde dümdüz adım adım yürümedi. Eratosten bunun için Mısır’dan bile ayrılmadı. Firavun katiplerinin çok dikkatli bir şekilde şehirler arası mesafeyi kaydettiğini biliyordu. İskenderiye ile Syene şehri arasıdaki mesafe 5000 stadyaydı. (1 stadya = 157,5 metre). Bir çember üzerindeki 5000 stadyalık yayı gören açıyı bulabilirse, bu açının 360’ın kaçta kaçı olduğunu basitçe hesaplayıp, 5000 stadyayı onunla çarpıp çemberin çevresini bulacaktı.
Syene şehri Yengeç Dönencesinin üstünde bulunuyordu. Yaz gündönümünde (yılına göre 20 veya 21 haziran) tam öğlen vakti Güneş ışıkları Yengeç Dönencesine dik düşmektedir. Yaz gündönümünde tam öğle vakti yengeç dönencesi üzerinde hiç bir cisim gölge vermez. Veya başka bir gözleme göre, güneşin yansıması bir kuyunun tam ortasına düşer. Güneş ışığı kuyunun dibinden devam etseydi, Dünya’nın merkezinden geçerdi diye kabul edebiliriz.
Öte yandan yaz gündönümünde, İskenderiye’de tam öğle vakti cisimler gölge verir. Çünkü güneş ışığı sadece Yengeç dönencesi üzerine dik düşer. İskenderiye Yengeç Dönencesi üzerinde değildir. Aksine 5000 stadya kuzeyindedir. Burada öğle vakti bir dikilitaşın vereceği gölgenin boyu, dikilitaşa oranlanarak, dikilitaşın güneş ışığı ile yaptığı açı hesaplanabilir.
Eratosten bu açıyı hesapladıktan sonra, sanıyoruz bir papirüse aşağıdakine benzer bir şekil çizmiştir.
Eratosten’in artık tek yapması gereken 50 ile 5000 stadyayı çarpmaktı. Heyecanla bu çarpımı yaptığını düşünüyoruz. Sonuç 250,000 stadyaydı. Bu, dönem matematiğinin tepe noktasıydı. Dünyanın çevresi tam 250,000 stadyaydı. Bize de stadyayı metreye çevirmek düşüyor. Bir stadya 157,5 metre ise 250,000 stadya 39,375,000 metredir. Eratosten bugünkü bilgilerimize göre yaklaşık %1,5’luk hatayla dünyanın kutupsal çapını bulmuştur. Stadya biriminin yıllar boyunca değişmesi ve tam olarak değerinin belli olmaması nedeniyle, bu hesabının %10 kadar hatalı olabileceğini söyleyenler vardır. Ancak gidiş yolu, kullandığı zeka ve öngörü, sonucun önüne geçmektedir.
Bu keşfi yapan Eratosten bununla yetinmemiş; çevre hesaplamasında kullandığı verilerle yaz ve kış gündönümlerine neden olan Dünya’nın eğiklik açısını da, bonus olarak, doğruya yakın bir şekilde hesaplayabilmiştir.
Artık her ne kadar şehirlerde yaşasak da insan türü olarak bizler, gezici türler olarak ortaya çıktık. Dünya üzerinde binlerce yıldır gittiğimiz yer her neresi olursa olsun, oraya uyum sağladık. Uyum sağlayabildiğimiz için insan olduk. Geldiğimiz yerleri belgelemek, gideceğimiz yerleri tanımak istedik. Bizim gidemediğimiz yerlere bizden sonrakilerin gidebilmesi için rakamları, harfleri icat ettik. Her birimizin genlerinde bu içgüdümüz kalıtılmış halde duruyor. Bugün aramızdan bazıları, modern Eratosten’ler, gidebileceğimiz yerleri buluyor, hesaplıyor, yıldızları izliyor, uzak gezegenlere araçlar indiriyor ve Evren’le aramızdaki bağı çözmeye çalışıyor. Geometri yerini yavaş yavaş astrometriye (gökölçümüne) bırakıyor. Kimilerimiz geldiğimiz yerleri tarihliyor, buralara gelirken yaptığımız hataları tespit ediyor. Bir daha tekrarlamamamız için bizleri uyarıyor. İnsanoğlu devamlı geldiği yer ile gideceği yerler arasındaki mesafeleri hesaplıyor ve onları kat etmeye çalışıyor. Güneş ile aramızdaki mesafe artık bize yetmiyor. Dünya’nın çevresini hesaplamak bizi durdurmuyor. İnsanoğlunun bu hesaplama içgüdüsü, matematiği asilce kullanışı karşısında gururlanmamak, Eratosten’lere imrenmemek elde değil.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 17
- 9
- 7
- 5
- 5
- 5
- 2
- 2
- 1
- 1
- 1
- 1
- Department of Mathematics, Texas A&M University. Rhind Matematik Papirüsü Problem 56. (25 Haziran 2019). Alındığı Tarih: 25 Haziran 2019. Alındığı Yer: Department of Mathematics, Texas A&M University | Arşiv Bağlantısı
- Nişanyan Sözlük. Nişanyan Sözlük. (25 Haziran 2019). Alındığı Tarih: 25 Haziran 2019. Alındığı Yer: Nişanyan Sözlük | Arşiv Bağlantısı
- Wikipedia. Stadya Uzunluk Birimi. (25 Haziran 2019). Alındığı Tarih: 25 Haziran 2019. Alındığı Yer: Wikipedia | Arşiv Bağlantısı
- Henry Davis. World According To Eratosthenes. (25 Haziran 2019). Alındığı Tarih: 25 Haziran 2019. Alındığı Yer: Henry Davis | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 22/01/2025 03:30:16 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/418
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.