Evrim Ağacı
Reklamı Kapat
Reklamı Kapat

Bu yazı, Evrim Ağacı'na ait, özgün bir içeriktir. Konu akışı, anlatım ve detaylar, Evrim Ağacı yazarı/yazarları tarafından hazırlanmış ve/veya derlenmiştir. Bu içerik için kullanılan kaynaklar, yazının sonunda gösterilmiştir. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

Fraktallar, büyükten küçüğe birbirine benzeyen birçok geometrik şeklin oluşturduğu, sonsuzluğa doğru giden, kompleks ve göz kamaştırıcı şekillerdir. Fraktal kelimesi Latince’deki ‘’fractus’’ kelimesinden türetilmiştir, kırılmış ve parçalanmış anlamına gelmektedir. Fraktal, bir geometri sistemidir; fraktallar yakından incelendiğinde büyük şekli oluşturan ve orantılı olarak küçülerek oluşan küçük şekillerin büyük şekle benzediği ve bu kendini tekrar etme olayının sonsuzluğa uzandığı görülür.

Fraktallarla İlgili İlk Çalışmalar

Fraktal şekillerle ilgili ilk çalışmalar Fransız matematikçiler Gaston Julia (1893-1978) ve Pierre Fatou (1878-1929) tarafından yapılmıştır fakat onların yaşadığı zaman diliminde bilgisayarlar henüz bu fraktalları gösterebilecek kadar gelişmediğinden, Gaston Julia kendi oluşturduğu fraktal kümesinin (Julia kümesi) şeklini bilgisayarda görememiştir.

Fraktal terimi ilk defa Polonya asıllı matematikçi Benoit Mandelbrot (1924-2010) tarafından 1975 yılında ortaya atılmıştır. Mandelbrot’un geliştirdiği Mandelbrot kümesi, sanal karmaşık sayıların kullanılmasıyla elde edilen fonksiyonları bilgisayar ortamında muhteşem fraktallara dönüştürülebilen kümedir.

Bu fraktal örneği kar tanesinden esinlenilerek çizilmiştir. Şekil yakından incelendiğinde büyük şekli oluşturan küçük şekillerin, büyük şeklin aynısı olduğu görülür.
Bu fraktal örneği kar tanesinden esinlenilerek çizilmiştir. Şekil yakından incelendiğinde büyük şekli oluşturan küçük şekillerin, büyük şeklin aynısı olduğu görülür.
Genetic Fractals
Başka bir fraktal örneği Sierpinski üçgenidir. Birbirine benzeyen eşkanar üçgenlerin oluşturduğu en bilindik fraktal örneklerinden biridir. Adını Polonyalı matematikçi Wacław Sierpiński’den almıştır.
Başka bir fraktal örneği Sierpinski üçgenidir. Birbirine benzeyen eşkanar üçgenlerin oluşturduğu en bilindik fraktal örneklerinden biridir. Adını Polonyalı matematikçi Wacław Sierpiński’den almıştır.
Wikipedia

Doğadaki Fraktal Örnekleri

Mandelbrot’un öncülüğünü yaptığı, bilgisayar ortamında ortaya çıkan muhteşem fraktal örneklerini incelemeden önce doğadaki fraktal örneklerine bir bakalım. Doğadaki fraktallar karmaşık ve düzensizdir. Daha önce hiç fraktal örneği görmemiş olsanız bile fraktal tanımına uygun örnekleri hemen bulabilirsiniz. Örneğin brokoli , karnabahar, kar tanesi veya eğrelti otunda gördüğümüz şekiller fraktal örnekleridir.

Bu şekillere baktığımızda ne kadar estetik olduklarını düşünürüz. Mandelbrot’a fraktalın ne olduğu sorulduğunda ağaç örneğini vermiştir. Ağacın dallarının ağacın kendisine benzediğini ve dallandıkça kendine benzeyen küçük ağaçcıklara dönüştüğünü anlatır Mandelbrot. Buradan fraktalın ortaya çıkışının doğadan esinlenerek gerçekleştiği düşünülebilir. Tabii ki, daha önce söylediğimiz gibi doğadaki fraktal örnekleri bilgisayarda şekillendirilen fraktal örnekleri kadar mükemmel değildir. Doğadaki birbirini tekrarlamalar birbirine çok benzese de, birbirinin aynısı olamaz.

Buz kristaline yakından baktığımızda buz kristalininin doğal bir fraktal olduğunu görürüz.
Buz kristaline yakından baktığımızda buz kristalininin doğal bir fraktal olduğunu görürüz.
Wikipedia
Eğrelti otu da doğadaki fraktal örneklerinden biridir. İngiliz matematikçi Michael Barnsley, Fractals Everywhere adlı kitabında eğrelti otu örneğini vermiştir. Dolayısıyla eğrelti otu fraktalının adı Barnsley eğrelti otu fraktalı olarak geçer.
Eğrelti otu da doğadaki fraktal örneklerinden biridir. İngiliz matematikçi Michael Barnsley, Fractals Everywhere adlı kitabında eğrelti otu örneğini vermiştir. Dolayısıyla eğrelti otu fraktalının adı Barnsley eğrelti otu fraktalı olarak geçer.
Wikipedia

Julia ve Mandelbrot Kümesi

Gelelim bilgisayar ortamında oluşturulan fraktallara. Yazının başında da söylediğimiz gibi Fransız matematikçi Gaston Julia ilk olarak fraktal geometrisi ile uğraşan kişilerden biridir ama oluşturduğu Julia kümesinin şeklini görme şansı olmamıştır.

Gaston Julia'nın yazdığı Julia kümesinin bilgisayarda oluşturduğu fraktal şekillerden biri.
Gaston Julia'nın yazdığı Julia kümesinin bilgisayarda oluşturduğu fraktal şekillerden biri.
Wikipedia

Fraktal terimi Benoit Mandelbrot tarafından 1975 yılında ortaya atılmıştır. Mandelbrot kümesinin fraktal şekli, 1979 yılında IBM bilgisayarlarına erişince oluşturulabilmiştir. Mandelbrot kümesi, bir dizi karmaşık sayının oluşturduğu fraktal şekildir. Mandelbrot, bu kümenin oluşumuna dair formülü kullanarak birbirinin benzeri şekillerin küçülerek sonsuza kadar oluştuğunu gözlemiştir.

Bu şekiller renklendirildiğinde görsel olarak büyüleyici şekiller oluşur. Bilgisayar ortamında oluşturulan Mandelbrot kümesi son derece basit bir denklemden üretilir. Karmaşık sayılar düzleminde f(z) olarak tanımlanan fonksiyonda z’nin karesi alınıp bir sabitin eklenmesiyle oluşur. Mandelbrot kümesi, zn + 1 = zn2 + c denklemiyle gösterilir. Bu denklemde c ve z karmaşık sayılardır, n ise sıfır veya pozitif bir tamsayıdır.

Mandelbrot Kümesinin Oluşturduğu Göz Kamaştıran Şekillerden Bazıları

Şimdi sırasıyla yayınlayacağımız şekiller, Mandelbrot kümesinin oluşturduğu başlangıç şekli üst üste büyütülerek elde edilmiştir. Mandelbrot bu çalışması sayesinde sanat ve bilim çevrelerinin hayranlığını kazanmıştır.

Evrim Ağacı'ndan Mesaj

Mandelbrot kümesinin ilk şekli.
Mandelbrot kümesinin ilk şekli.
Wikipedia
Yukarıdaki şekli biraz büyüttüğümüzde karşımıza çıkan, baş ve gövde arasında yer alan ve ‘’denizatı vadisi’’ olarak adlandırılan bölge.
Yukarıdaki şekli biraz büyüttüğümüzde karşımıza çıkan, baş ve gövde arasında yer alan ve ‘’denizatı vadisi’’ olarak adlandırılan bölge.
Wikipedia
Denizatı vadisi biraz daha büyütüldüğünde görülen sağdaki şekiller ‘’denizatı’’, soldakiler ‘’çift spiraller’’dir.
Denizatı vadisi biraz daha büyütüldüğünde görülen sağdaki şekiller ‘’denizatı’’, soldakiler ‘’çift spiraller’’dir.
Wikipedia
‘’Denizatı’’ şekillerinden birinin daha da büyütülmüş hali.
‘’Denizatı’’ şekillerinden birinin daha da büyütülmüş hali.
Wikipedia
''Denizatı'' şeklinin kuyruğu büyütüldüğünde karşımıza çıkan şekil.
''Denizatı'' şeklinin kuyruğu büyütüldüğünde karşımıza çıkan şekil.
Wikipedia
''Denizatı'' şeklinin kuyruğunu oluşturan bölümler.
''Denizatı'' şeklinin kuyruğunu oluşturan bölümler.
Wikipedia
Yukarıdaki şeklin merkezi büyütüldüğünde karşımıza çıkan şekil.
Yukarıdaki şeklin merkezi büyütüldüğünde karşımıza çıkan şekil.
Wikipedia
Yukarıdaki şeklin merkezi daha da büyütüldüğünde ise karşımıza başlangıç şeklinde gördüğümüz baş, gövde ve antenden oluşan şekil çıkar.
Yukarıdaki şeklin merkezi daha da büyütüldüğünde ise karşımıza başlangıç şeklinde gördüğümüz baş, gövde ve antenden oluşan şekil çıkar.
Wikipedia

Gördüğünüz gibi ne kadar odaklanırsak o kadar ayrıntılı şekillere ulaşırız. Bu şekiller birbirini takip eden şekillerdir. Karşımıza Mandelbrot kümesinin başlangıcında yer alan siyah şekiller, denizatı vadileri, denizatları ve denizatlarının kuyrukları çıkar. Ortaya çıkan bu karmaşık şekiller adeta görsel bir şölen gibidir. Mandelbrot bir söyleşisinde şunları söylemiştir:

Bizi şaşırtan şey, hem Julia kümesi hem de Mandelbrot kümesindeki girifliğin, nasıl desek, keyfi olmamasıydı ve neredeyse herkeste bu şekillerin harikulade güzel olduğu izlenimi uyanmıştı. Bu şekiller çok basit bir fonksiyonun, z2+c’nin ciddiye alınması ve görselleştirilmesiyle ortaya çıktı. İnsanlar ilk başta bunun tamamen dünya dışına ait bir şey olduğunu düşündüler ama sonra, çok kısa bir süre sonra geri gelip şöyle dediler: "Biliyor musunuz, bunlar bana bir şey hatırlatıyor. Bence bunlar doğal. Kâbus ya da rüya gibiler ama doğallar." Ve bu kombinasyon; yeni olmaları, çünkü onları daha önce hiç kimse görmemişti ama diğer yandan da çok bilindik olmaları, bana hâlâ olağanüstü şaşırtıcı geliyor.
Bu İçerik Size Ne Hissettirdi?
  • Merak Uyandırıcı! 5
  • Muhteşem! 4
  • Tebrikler! 4
  • Umut Verici! 1
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • Wikipedia, et al. Mandelbrot Set. (2018, Aralık 17). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: Wikipedia | Arşiv Bağlantısı
  • Jack Challoner. How Mandelbrot's Fractals Changed The World. (2010, Ocak 18). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: BBC | Arşiv Bağlantısı
  • Wikipedia, et al. Fractal. (2018, Aralık 17). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: Wikipedia | Arşiv Bağlantısı
  • Wikiquote, et al. Benoît Mandelbrot. (2018, Aralık 17). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: Wikiquote | Arşiv Bağlantısı
  • Simeon Hein. What Are The Fractals?. (2018, Aralık 18). Alındığı Tarih: 18 Aralık 2018. Alındığı Yer: Gaia | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 11/07/2020 17:43:09 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/7518

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Güncel
Rna
Vegan
Primat
Anne
Veri
Hayvan
Abd
Aminoasit
Okyanus
Doğum
Eczacılık
Ölüm
Kedi
Stephen Hawking
Sanat
Kütleçekimi
Araştırma
Sağlık Personeli
Fosil
Balıkçılık
Evrim Ağacı
Koronavirüs
Doğa Olayları
Ses
Lhc (Büyük Hadron Çarpıştırıcısı)
Daha Fazla İçerik Göster
Daha Fazla İçerik Göster
Reklamı Kapat
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Kitaplar, olduğumuz yerde kalmamız gerektiği zamanlarda bize gidecek bir yer verirler.”
Mason Cooley
Geri Bildirim Gönder