Fraktallar: Göz Kamaştıran Geometrik Şekiller

Fraktallar: Göz Kamaştıran Geometrik Şekiller Wikipedia
Şule Ölez Editör Şule Ölez  DamlaŞahin 2. Editör Damla Şahin
5 dakika
18,691 Okunma Sayısı
Notlarım
Reklamı Kapat

Fraktallar, büyükten küçüğe birbirine benzeyen birçok geometrik şeklin oluşturduğu, sonsuzluğa doğru giden, kompleks ve göz kamaştırıcı şekillerdir. Fraktal kelimesi Latince’deki ‘’fractus’’ kelimesinden türetilmiştir, kırılmış ve parçalanmış anlamına gelmektedir. Fraktal, bir geometri sistemidir; fraktallar yakından incelendiğinde büyük şekli oluşturan ve orantılı olarak küçülerek oluşan küçük şekillerin büyük şekle benzediği ve bu kendini tekrar etme olayının sonsuzluğa uzandığı görülür.

Fraktallarla İlgili İlk Çalışmalar

Fraktal şekillerle ilgili ilk çalışmalar Fransız matematikçiler Gaston Julia (1893-1978) ve Pierre Fatou (1878-1929) tarafından yapılmıştır fakat onların yaşadığı zaman diliminde bilgisayarlar henüz bu fraktalları gösterebilecek kadar gelişmediğinden, Gaston Julia kendi oluşturduğu fraktal kümesinin (Julia kümesi) şeklini bilgisayarda görememiştir.

Fraktal terimi ilk defa Polonya asıllı matematikçi Benoit Mandelbrot (1924-2010) tarafından 1975 yılında ortaya atılmıştır. Mandelbrot’un geliştirdiği Mandelbrot kümesi, sanal karmaşık sayıların kullanılmasıyla elde edilen fonksiyonları bilgisayar ortamında muhteşem fraktallara dönüştürülebilen kümedir.

Reklamı Kapat

Bu fraktal örneği kar tanesinden esinlenilerek çizilmiştir. Şekil yakından incelendiğinde büyük şekli oluşturan küçük şekillerin, büyük şeklin aynısı olduğu görülür.
Bu fraktal örneği kar tanesinden esinlenilerek çizilmiştir. Şekil yakından incelendiğinde büyük şekli oluşturan küçük şekillerin, büyük şeklin aynısı olduğu görülür.
Genetic Fractals
Başka bir fraktal örneği Sierpinski üçgenidir. Birbirine benzeyen eşkanar üçgenlerin oluşturduğu en bilindik fraktal örneklerinden biridir. Adını Polonyalı matematikçi Wacław Sierpiński’den almıştır.
Başka bir fraktal örneği Sierpinski üçgenidir. Birbirine benzeyen eşkanar üçgenlerin oluşturduğu en bilindik fraktal örneklerinden biridir. Adını Polonyalı matematikçi Wacław Sierpiński’den almıştır.
Wikipedia

Doğadaki Fraktal Örnekleri

Mandelbrot’un öncülüğünü yaptığı, bilgisayar ortamında ortaya çıkan muhteşem fraktal örneklerini incelemeden önce doğadaki fraktal örneklerine bir bakalım. Doğadaki fraktallar karmaşık ve düzensizdir. Daha önce hiç fraktal örneği görmemiş olsanız bile fraktal tanımına uygun örnekleri hemen bulabilirsiniz. Örneğin brokoli , karnabahar, kar tanesi veya eğrelti otunda gördüğümüz şekiller fraktal örnekleridir.

Bu şekillere baktığımızda ne kadar estetik olduklarını düşünürüz. Mandelbrot’a fraktalın ne olduğu sorulduğunda ağaç örneğini vermiştir. Ağacın dallarının ağacın kendisine benzediğini ve dallandıkça kendine benzeyen küçük ağaçcıklara dönüştüğünü anlatır Mandelbrot. Buradan fraktalın ortaya çıkışının doğadan esinlenerek gerçekleştiği düşünülebilir. Tabii ki, daha önce söylediğimiz gibi doğadaki fraktal örnekleri bilgisayarda şekillendirilen fraktal örnekleri kadar mükemmel değildir. Doğadaki birbirini tekrarlamalar birbirine çok benzese de, birbirinin aynısı olamaz.

Buz kristaline yakından baktığımızda buz kristalininin doğal bir fraktal olduğunu görürüz.
Buz kristaline yakından baktığımızda buz kristalininin doğal bir fraktal olduğunu görürüz.
Wikipedia
Eğrelti otu da doğadaki fraktal örneklerinden biridir. İngiliz matematikçi Michael Barnsley, Fractals Everywhere adlı kitabında eğrelti otu örneğini vermiştir. Dolayısıyla eğrelti otu fraktalının adı Barnsley eğrelti otu fraktalı olarak geçer.
Eğrelti otu da doğadaki fraktal örneklerinden biridir. İngiliz matematikçi Michael Barnsley, Fractals Everywhere adlı kitabında eğrelti otu örneğini vermiştir. Dolayısıyla eğrelti otu fraktalının adı Barnsley eğrelti otu fraktalı olarak geçer.
Wikipedia

Julia ve Mandelbrot Kümesi

Gelelim bilgisayar ortamında oluşturulan fraktallara. Yazının başında da söylediğimiz gibi Fransız matematikçi Gaston Julia ilk olarak fraktal geometrisi ile uğraşan kişilerden biridir ama oluşturduğu Julia kümesinin şeklini görme şansı olmamıştır.

Gaston Julia'nın yazdığı Julia kümesinin bilgisayarda oluşturduğu fraktal şekillerden biri.
Gaston Julia'nın yazdığı Julia kümesinin bilgisayarda oluşturduğu fraktal şekillerden biri.
Wikipedia

Fraktal terimi Benoit Mandelbrot tarafından 1975 yılında ortaya atılmıştır. Mandelbrot kümesinin fraktal şekli, 1979 yılında IBM bilgisayarlarına erişince oluşturulabilmiştir. Mandelbrot kümesi, bir dizi karmaşık sayının oluşturduğu fraktal şekildir. Mandelbrot, bu kümenin oluşumuna dair formülü kullanarak birbirinin benzeri şekillerin küçülerek sonsuza kadar oluştuğunu gözlemiştir.

Bu şekiller renklendirildiğinde görsel olarak büyüleyici şekiller oluşur. Bilgisayar ortamında oluşturulan Mandelbrot kümesi son derece basit bir denklemden üretilir. Karmaşık sayılar düzleminde f(z) olarak tanımlanan fonksiyonda z’nin karesi alınıp bir sabitin eklenmesiyle oluşur. Mandelbrot kümesi, zn + 1 = zn2 + c denklemiyle gösterilir. Bu denklemde c ve z karmaşık sayılardır, n ise sıfır veya pozitif bir tamsayıdır.

Evrim Ağacı'ndan Mesaj

Mandelbrot Kümesinin Oluşturduğu Göz Kamaştıran Şekillerden Bazıları

Şimdi sırasıyla yayınlayacağımız şekiller, Mandelbrot kümesinin oluşturduğu başlangıç şekli üst üste büyütülerek elde edilmiştir. Mandelbrot bu çalışması sayesinde sanat ve bilim çevrelerinin hayranlığını kazanmıştır.

Mandelbrot kümesinin ilk şekli.
Mandelbrot kümesinin ilk şekli.
Wikipedia
Yukarıdaki şekli biraz büyüttüğümüzde karşımıza çıkan, baş ve gövde arasında yer alan ve ‘’denizatı vadisi’’ olarak adlandırılan bölge.
Yukarıdaki şekli biraz büyüttüğümüzde karşımıza çıkan, baş ve gövde arasında yer alan ve ‘’denizatı vadisi’’ olarak adlandırılan bölge.
Wikipedia
Denizatı vadisi biraz daha büyütüldüğünde görülen sağdaki şekiller ‘’denizatı’’, soldakiler ‘’çift spiraller’’dir.
Denizatı vadisi biraz daha büyütüldüğünde görülen sağdaki şekiller ‘’denizatı’’, soldakiler ‘’çift spiraller’’dir.
Wikipedia
‘’Denizatı’’ şekillerinden birinin daha da büyütülmüş hali.
‘’Denizatı’’ şekillerinden birinin daha da büyütülmüş hali.
Wikipedia
''Denizatı'' şeklinin kuyruğu büyütüldüğünde karşımıza çıkan şekil.
''Denizatı'' şeklinin kuyruğu büyütüldüğünde karşımıza çıkan şekil.
Wikipedia
''Denizatı'' şeklinin kuyruğunu oluşturan bölümler.
''Denizatı'' şeklinin kuyruğunu oluşturan bölümler.
Wikipedia
Yukarıdaki şeklin merkezi büyütüldüğünde karşımıza çıkan şekil.
Yukarıdaki şeklin merkezi büyütüldüğünde karşımıza çıkan şekil.
Wikipedia
Yukarıdaki şeklin merkezi daha da büyütüldüğünde ise karşımıza başlangıç şeklinde gördüğümüz baş, gövde ve antenden oluşan şekil çıkar.
Yukarıdaki şeklin merkezi daha da büyütüldüğünde ise karşımıza başlangıç şeklinde gördüğümüz baş, gövde ve antenden oluşan şekil çıkar.
Wikipedia

Gördüğünüz gibi ne kadar odaklanırsak o kadar ayrıntılı şekillere ulaşırız. Bu şekiller birbirini takip eden şekillerdir. Karşımıza Mandelbrot kümesinin başlangıcında yer alan siyah şekiller, denizatı vadileri, denizatları ve denizatlarının kuyrukları çıkar. Ortaya çıkan bu karmaşık şekiller adeta görsel bir şölen gibidir. Mandelbrot bir söyleşisinde şunları söylemiştir:

Bizi şaşırtan şey, hem Julia kümesi hem de Mandelbrot kümesindeki girifliğin, nasıl desek, keyfi olmamasıydı ve neredeyse herkeste bu şekillerin harikulade güzel olduğu izlenimi uyanmıştı. Bu şekiller çok basit bir fonksiyonun, z2+c’nin ciddiye alınması ve görselleştirilmesiyle ortaya çıktı. İnsanlar ilk başta bunun tamamen dünya dışına ait bir şey olduğunu düşündüler ama sonra, çok kısa bir süre sonra geri gelip şöyle dediler: "Biliyor musunuz, bunlar bana bir şey hatırlatıyor. Bence bunlar doğal. Kâbus ya da rüya gibiler ama doğallar." Ve bu kombinasyon; yeni olmaları, çünkü onları daha önce hiç kimse görmemişti ama diğer yandan da çok bilindik olmaları, bana hâlâ olağanüstü şaşırtıcı geliyor.
Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 8
  • Merak Uyandırıcı! 7
  • Muhteşem! 5
  • Umut Verici! 3
  • İnanılmaz 2
  • Bilim Budur! 1
  • Mmm... Çok sapyoseksüel! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • Wikipedia, et al. Mandelbrot Set. (17 Aralık 2018). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: Wikipedia | Arşiv Bağlantısı
  • Jack Challoner. How Mandelbrot's Fractals Changed The World. (18 Ocak 2010). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: BBC | Arşiv Bağlantısı
  • Wikipedia, et al. Fractal. (17 Aralık 2018). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: Wikipedia | Arşiv Bağlantısı
  • Wikiquote, et al. Benoît Mandelbrot. (17 Aralık 2018). Alındığı Tarih: 17 Aralık 2018. Alındığı Yer: Wikiquote | Arşiv Bağlantısı
  • Simeon Hein. What Are The Fractals?. (18 Aralık 2018). Alındığı Tarih: 18 Aralık 2018. Alındığı Yer: Gaia | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 29/09/2021 00:15:38 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/7518

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Size Özel
İçerikler
Instagram
Sıcaklık
Evrimsel Süreç
Şempanze
Kanıt
Kalori
Mars
Biyoloji
Psikiyatri
Tahmin
Çevre
Nöron Hücresi
Beyin
Coğrafya
Lgbt
Savaş
Kök Hücre
Şüphecilik
Makina
Kadın
Sağlık Örgütü
Madde
Sinir Hücresi
Fosil
Dağılım
Görüş
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Sizi Takip Ediyor

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın