Bu Reklamı Kapat
Bu Reklamı Kapat

Evrim Ağacı Yazarları İçin KaTeX Kullanım Kılavuzu

Evrim Ağacı Yazarları İçin KaTeX Kullanım Kılavuzu
8 dakika
518
  • Evrim Ağacı Sistemleri

Evrim Ağacı'nda matematik formüllerini yazmakta ve derlemekte KaTeX (KaTeX\KaTeX) kütüphanesi kullanılmaktadır. Bu dokümanda, KaTeX\KaTeX kullanımıyla ilgili detayları ve bazı ipuçlarını öğreneceksiniz.

KaTeX Nedir?

Başlamadan önce biraz arka plan bilgisi vermek gerekirse: KaTeX\KaTeX, daha popüler kuzeni LaTeX\LaTeX'in bütün arayüzüne ihtiyaç olmaksızın internet, bilgisayar ve mobil cihazlar üzerinde TeX\TeX formatında yazılmış matematik formüllerini derleyebilen son derece hızlı bir JavaScript kütüphanesidir. Khan Academy tarafından açık kaynak olarak geliştirilmiştir.

TeX\TeX, Amerikalı bilgisayar bilimci, matematikçi ve Stanford Üniversitesi ayrıcalıklı profesörlerinden Donald Knuth tarafından geliştirilmiş bir matematik yazım sistemidir. Günümüzde özellikle matematikçiler, bilgisayar bilimciler, ekonomistler, politik bilimciler, mühendisler, dilbilimciler, fizikçiler, istatistikçiler ve nicel psikologlar olmak üzere çok sayıda bilim dalında yaygın olarak kullanılan dil, günümüzdeki en gelişmiş yazım sistemlerinden biri olarak kabul edilmektedir ve ilk olarak 1978 senesinde yayınlanmıştır.

KaTeX\KaTeX, matematiksel formülleri derleme anlamında LaTeX\LaTeX'in pratik olarak bütün özelliklerine sahiptir; ancak LaTeX\LaTeX için üretilen bazı eklentiler ve özelliklerden yoksundur.

Yazılımcılar, KaTeX\KaTeX kurulumuyla ilgili tüm bilgileri buradan alabilirler.

KaTeX Kullanımında Bilinmesi Gerekenler

KaTeX\KaTeX, son derece basit ve kullanışlı bir arayüze sahiptir. Tek yapmanız gereken, bir formül girmek istediğinizde, Evrim Ağacı metin editöründeki fxf_x işaretine tıklamaktır. Açılan kutuya girmek istediğiniz TeX\TeX kodunu girip, formülünüzü yayınlayabilirsiniz.

Aşağıda, sık kullanılan bazı formüller gösterilecek ve bazı temel bilgiler verilecektir. Eğer temel düzeyde TeX\TeX bilginiz varsa, matematiksel formül kodlarının tam listesini incelemek için buraya tıklayabilirsiniz.

Sıradan İşlemler

Birçok matematiksel işlem için sıradan işlem işaretlerini kullanabilirsiniz. Örneğin x=5+2-(3/7)*9 komutu şu şekilde derlenecektir: x=5+2−(3/7)∗9x=5+2-(3/7)*9.

Benzer şekilde, 3>23>2 veya x<yx<y komutlarını da 3>2 veya x<y şeklinde girebilirsiniz.

Üstel Sayılar (Superscript)

Basit bir örnekle başlayalım: Eğer "x üzeri 3" yazmak istersek, fxf_x kutumuza x^3 yazmamız gerekmektedir. Bu, şu şekilde derlenmektedir: x3x^3

Dolayısıyla Einstein'ın meşhur formülünü E=mc^2 şeklinde yazarsak: E=mc2E=mc^2

İşleri biraz daha karmaşıklaştırmak adına, formülün orijinal versiyonunu E^2=(mc^2)^2+(pc)^2 şeklinde yazarsak: E2=(mc2)2+(pc)2E^2=(mc^2)^2+(pc)^2

Eğer "x üzeri 23" yazmak istersek, üstel kısımda 1'den fazla basamak olduğu için, fxf_x kutumuza x^{23} yazmamız gerekmektedir: x23x^{23}

  • Uyarı: Eğer formülümüzde {}{ } kullanmayacak olursak (yani x^23 yazarsak), üstel sayının sadece ilk basamağını üsse alacaktır: x23x^23
  • Dolayısıyla KaTeX\KaTeX'te anlaşılması gereken en önemli şey, tırnaklı parantez kullanımıyla komutları doğru yönlendirebilmektir.

Eğer üstelin üstelini yapmak istersek, her üstel sayımızı tırnaklı paranteze koymamız gerekmektedir. Örneğin xy2 x^{y^{2}} formülü, x^{y^{2}} şeklinde yazılmaktadır.

  • Önemli Bilgi: KaTeX\KaTeX içerisinde { } parantezleri kod olarak algılanmaktadır. Eğer bu işaretleri gerçekten parantez amaçlı kullanmak istiyorsanız, \{ ve \} komutlarını kullanabilirsiniz. Bunlar, şöyle derlenecektir: {\{ ve }\}.
  • Görülebileceği gibi \ işareti, komutları bildirmek için kullanılmaktadır.
  • Diğer parantezleri ( ) veya [ ] şeklinde, normal biçimde kullanabilirsiniz. Bu parantezlerin çok özel durumlar haricinde kod açısından bir anlamı yoktur.
  • İşlem önceliği belirlemek için de { } kullanılmalıdır.

Karekök ve Diğer Kökler

Bu özel durumlara bir örnek, köklü sayılarda verilebilir. Normalde "kök 2" sayısı, \sqrt{2} formülüyle girilebilir: 2\sqrt{2}. Ancak karekökten farklı kökler için, köşeli parantez kullanılmalıdır. Örneğin "küpkök 5" sayısını \sqrt[3]{5} şeklinde yazmanız gerekmektedir: 53\sqrt[3]{5}.

Alt İndis (Subscript)

Bunun haricinde, alt indis girmek için _ sembolü kullanılmalıdır. Örneğin hidrojen gazı, H_2 şeklinde yazılabilir: H2H_2. Yine, birden fazla hane girilecekse { } parantezleri kullanılmalıdır. Örneğin, C12C_{12} yazmak için C_{12} komutu kullanılmalıdır. C_12, şu şekilde derlenecektir: C12C_12.

Alt alt indis yapmak için, tırnaklı parantez kullanmanız gerekmektedir. Örneğin xy2x_{y_{2}} yazmak için x_{y_{2}} şeklinde girmelisiniz.

Metin

TeX\TeX formatında metin girmek için \text komutunu kullanabilirsiniz. Örneğin \text{metin} komutu şu şekilde derlenmektedir: metin\text{metin}.

Kesirli Sayılar

Kesirli sayıları yazmak için \frac{}{} formülünü kullanabilirsiniz. Burada ilk parantez pay, ikinci parantez payda olacaktır. Örneğin 3/4 sayısını kesirli yazmak için, \frac{3}{4} yazabilirsiniz: 34\frac{3}{4}

Temel Bir Örnek

Buraya kadar öğrendiklerimizi toparlamak adına, Einstein'ın parçacıkların kinetik enerjisine yönelik özgün denklemini yazmaya çalışabiliriz. Hedefimiz, şu görseldekini KaTeX\KaTeX ile yazmak:

Bunu şu şekilde formülleştirebiliriz: E_k=mc^2(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1)

Bunu fxf_x içerisine girecek olursak:

Ek=mc2(11−v2c2−1)E_k=mc^2(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1)

Parantez Boyutları

Bundan henüz bahsetmedik; ancak eğer ( ) şeklindeki düz parantezlerimizi daha büyük yazmak istersek, büyüklük sırasına göre şu komutları kullanabiliriz:

  • \big( komutu: (\big(
  • \Big( komutu: (\Big(
  • \bigg( komutu: (\bigg(
  • \Bigg( komutu:(\Bigg(
  • Aynılarının kapat parantez versiyonlarını da yazabilirsiniz. Örneğin \bigg) komutu: )\bigg)

Bu durumda, dilersek görseldekine daha yakın olması adına büyük parantezler kullanabiliriz. Bunu yapmak için E_k=mc^2\Bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\Bigg) komutunu yazabiliriz:

Ek=mc2(11−v2c2−1)E_k=mc^2\Bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\Bigg)

Formül Metin Boyutları (Özel Notasyon)

Eğer formülümüzü büyütmek istersek, şu komutlarla büyüklüğünü değiştirebiliriz:

  • \Huge AB komutu: AB\Huge AB
  • \huge AB komutu: AB\huge AB
  • \LARGE AB komutu: AB\LARGE AB
  • \Large AB komutu: AB\Large AB
  • \large AB komutu: AB\large AB

Herhangi bir nedenle boyutu küçültmek isterseniz:

  • \small AB komutu: AB\small AB
  • \footnotesize AB komutu: AB\footnotesize AB
  • \scriptsize AB komutu: AB\scriptsize AB
  • \tiny AB komutu: AB\tiny AB

Buna ihtiyaç olmaz ama "normal boyut"ta yazmayı komutla çağırmak isterseniz, \normalsize AB yazabilirsiniz: AB\normalsize AB. Bu, "AB" yazmakla aynıdır: ABAB

  • Ayrıca dilerseniz { } kullanabilirsiniz. Örneğin \large{E=mc^2} yazarsanız: E=mc2\large{E=mc^2}
  • Bu kod, \large E=mc^2 ile aynı çalışır: E=mc2\large E=mc^2

Bu durumda yukarıdaki formülümüzü görseldekine iyice yaklaştırmak adına, metin boyutumuzu da büyütebiliriz: \Large{E_k=mc^2\Bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\Bigg)}

Ek=mc2(11−v2c2−1)\Large{E_k=mc^2\Bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\Bigg)}

İhtiyaç Olabilecek ve Sık Kullanılan Komutlar

Bu kısımda, temel komutların ötesinde Evrim Ağacı yazılarınızda ihtiyacınız olan bazı komutları tanıtacağız. Eğer tam listesini öğrenmek isterseniz, buraya tıklayınız.

Aksanlar

  • \bar{y} komutu: yˉ\bar{y}
  • \dot{a} komutu: a˙\dot{a}
  • \ddot{a} komutu: a¨\ddot{a}
  • \tilde{a} komutu: a~\tilde{a}
  • \vec{F} komutu: F⃗\vec{F}
  • \overline{AB} komutu: AB‾\overline{AB}
  • Daha fazlası için.

Ayraçlar / Ayırıcılar / Parantezler

Bunların hepsi direkt olarak klavyeden yapılabilir komutlardır; dilerseniz aşağıdan kopyalayabilirsiniz:

  • ( ) komutu: ()( )
  • [ ] komutu: [][ ]
  • ⟨ ⟩ komutu: ⟨⟩⟨ ⟩
  • | komutu: ∣|
  • \| komutu: ∥\|
  • ⟦ ⟧ komutu: ⟦⟧⟦ ⟧
  • ⌈ ⌉ komutu: ⌈⌉⌈ ⌉
  • ⌊ ⌋ komutu: ⌊⌋⌊ ⌋

Bunlardan daha fazlasını görmek için buraya tıklayınız.

  • Önemli Bilgi: Görebileceğiniz gibi bu ayraçlar arasındaki boşluk görmezden gelinmektedir. Eğer kodunuza boşluk eklemek isterseniz, \space komutunu kullanabilirsiniz. Örneğin ⟦ ⟧ komutunu ⟦\space⟧ şeklinde yazarsanız: ⟦ ⟧⟦\space⟧ şeklinde boşluk da gelecektir.

Harfler ve Unicode

Buraya hepsini taşımak anlamsız olacağı için, kullanabileceğiniz tüm özel harfleri buradan görebilirsiniz.

Mantık ve Set Teorisi

  • \forall komutu: ∀\forall
  • \exists komutu: ∃\exists
  • \nexists komutu: ∄\nexists
  • \in komutu: ∈\in
  • \notin komutu: ∉\notin
  • \subset komutu: ⊂\subset
  • \supset komutu: ⊃\supset
  • \land komutu: ∧\land
  • \lor komutu: ∨\lor
  • \ni komutu: ∋\ni
  • \therefore komutu: ∴\therefore
  • \because komutu: ∵\because
  • \to komutu: →\to
  • \gets komutu: ←\gets
  • \leftrightarrow komutu: ↔\leftrightarrow
  • \implies komutu:   ⟹  \implies
  • \iff komutu:   ⟺  \iff
  • \neg komutu: ¬\neg
  • Daha fazlası

Operatörler

  • \sum komutu: ∑\sum
  • \displaystyle\sum_{i=1}^n komutu: ∑i=1n\displaystyle\sum_{i=1}^n
  • \int komutu: ∫\int
  • \displaystyle\int_1^n komutu: ∫1n\displaystyle\int_1^n
  • \iint komutu: ∬\iint
  • \prod komutu: ∏\prod
  • \displaystyle\prod_1^n komutu: ∏1n\displaystyle\prod_1^n
  • \sin komutu: sin⁡\sin
  • \cos komutu: cos⁡\cos
  • \arcsin komutu: arcsin⁡\arcsin
  • \ln komutu: ln⁡\ln
  • \log komutu: log⁡\log
  • \lim komutu: lim⁡\lim
  • Daha fazlası

İlişkiler

  • \ne komutu: ≠\ne
  • \approx komutu: ≈\approx
  • \approxeq komutu: ≊\approxeq
  • \equiv komutu: ≡\equiv
  • \ge komutu: ≥\ge
  • \le komutu: ≤\le
  • \sim komutu: ∼\sim
  • \simeq komutu: ≃\simeq
  • Daha fazlası

Semboller ve Noktalama İşaretleri

Bazı özel işaretler ve semboller kod olarak algılanabildiği için başlarına \ işareti koymanız gerekebilir. En önemlileri:

  • \% komutu: %\%
  • \& komutu: &\&
  • \$ komutu: $\$
  • \infty komutu: ∞\infty
  • \nabla komutu: ∇\nabla
  • Daha fazlası

Pratik Yapmak İçin Örnekler

  • Pisagor Teoremi: c^2=a^2+b^2 veya c2=a2+b2c^2=a^2+b^2
  • Karmaşık Sayılar: i=\sqrt{-1} veya i=−1i=\sqrt{-1}
  • Doğal Logaritma ve Tersi: \ln{N}=x\iff{N=e^x} veya ln⁡N=x  ⟺  N=ex\ln{N}=x\iff{N=e^x}
  • Kalkülüs: \displaystyle\int^b_af'(x)dx=f(b)-f(a) veya ∫abf′(x)dx=f(b)−f(a)\displaystyle\int^b_af'(x)dx=f(b)-f(a)
  • Kütleçekim: F_1=F_2=G\frac{m_1\times{m_2}}{r^2} veya F1=F2=Gm1×m2r2F_1=F_2=G\frac{m_1\times{m_2}}{r^2}
  • Genel Görelilik: G_{\mu\nu}=\frac{8\pi{G}}{c^4}T_{\mu\nu} veya Gμν=8πGc4TμνG_{\mu\nu}=\frac{8\pi{G}}{c^4}T_{\mu\nu}
  • Termodinamiğin 2. Yasası: \Delta{S}\ge{0} veya ΔS≥0\Delta{S}\ge{0}
  • Gauss Yasası: \nabla\cdot\bold{\Epsilon}=\frac{\rho}{\epsilon_0} veya ∇⋅E=ρϵ0\nabla\cdot\bold{\Epsilon}=\frac{\rho}{\epsilon_0}
  • Gauss'un Manyetizma Yasası: \nabla\cdot\bold{B}=0 veya ∇⋅B=0\nabla\cdot\bold{B}=0
  • Faraday Yasası: \nabla\times\bold{\Epsilon}=\frac{\partial{\bold{B}}}{\partial{t}_0} veya ∇×E=∂B∂t0\nabla\times\bold{\Epsilon}=\frac{\partial{\bold{B}}}{\partial{t}_0}
  • Amper Yasası: \nabla\times\bold{B}=\mu_0\bold{j}+\mu_0\epsilon_0 \frac{\partial{\mathbf{\Epsilon}}}{\partial{t}_0} veya ∇×B=μ0j+μ0ϵ0∂E∂t0\nabla\times\bold{B}=\mu_0\bold{j}+\mu_0\epsilon_0\frac{\partial{\mathbf{\Epsilon}}}{\partial{t}_0}
  • Euler Eşitliği: e^{i\pi}+1=0 veya eiπ+1=0e^{i\pi}+1=0

Sonuç

Evrim Ağacı olarak, bilimsel içerikli yazıların yayınlanması için en uygun ve etkili araçları sağlamaya çalışmaktayız. Yıllardır metin editörümüzün bir parçası olan KaTeX\KaTeX'in daha geniş bir yazar kitlesi tarafından kullanılabilmesi adına hazırladığımız bu dokümanın faydalı olmasını ümit ediyoruz.

Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 1
  • Muhteşem! 0
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Bu Reklamı Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 23/05/2022 18:34:28 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/11484

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Bu Reklamı Kapat
Size Özel (Beta)
İçerikler
Sosyal
Kelebek
Nükleer Enerji
Canlılık Cansızlık
Süt
Mikroevrim
Deney
Bilim İnsanları
Mers
Meyve
Etoloji
Makine
Kimyasal Evrim
Halk Sağlığı
Botanik
Wuhan Koronavirüsü
İnsanın Evrimi
Türlerin Kökeni
Safsata
Yatay Gen Transferi
Hamile
Küresel Salgın
Homo Sapiens
Fosil
Uçak
Alkol
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nda reklamları 2 şekilde kapatabilirsiniz:

  1. Ücretsiz üye girişi yapmak: Sitedeki reklamların %50 kadarını kapatmak için ücretsiz bir Evrim Ağacı üyeliği açmanız ve sitemizi/uygulamamızı kullanmanız yeterli!

  2. Maddi destekçilerimiz arasına katılmak: Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Alıntı Ekle
Kurallar
Komünite Kuralları
Bu komünite, fark edildiğinde ufku genişleten tespitler içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Bu Eseri Neden Tavsiye Ediyorsun?
Aşağıdaki kutuya, isimli neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin faydalı bulunması halinde Evrim Ağacı kullanıcılarından daha fazla UP kazanman mümkün olacak. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Tavsiye Et