Etilen Nedir? Bitkiler İçin Etilen Hormonu Neden Önemlidir?
Etilen gazı, bitki yaşam döngüsü boyunca bitki büyümesi, gelişimi ve stres yanıtlarındaki çeşitli süreçleri etkileyen önemli bir bitki hormonudur. Etilen etkisinde gerçekleşen meyve olgunlaşması gibi tepkiler, tarım için önemlidir. Günümüzde etilen sinyal yolağının temel moleküler unsurları anlaşılabilmiştir ve bunların negatif olarak düzenlenen benzersiz bir yolak olduğu ortaya çıkarılmıştır. Bu bilgilerin pratik uygulamaları, tarımda önemli gelişmeler sağlayabilir.
Bitki Hormonu Olarak Etilen Nedir?
Basit bir hidrokarbon olan etilen, C2H4 sembolüyle gösterilir ve büyük bir önemi olan küçük, gaz formundaki bir moleküldür. Etilen; kauçuk, plastik, boya deterjan ve oyuncaklar gibi çok sayıda ürünün imalatında kullanılmasıyla Dünya'da en çok üretilen organik bileşik olmasının yanı sıra, bitki biyolojisinde önemli bir hormondur. Bu uçucu gaz molekülü; tohum çimlenmesi, kök gelişimi, sürgün ve kök büyümesi, ek köklerin oluşumu, yaprak ve meyve absisyonu, çiçeklenme, bitkinin eşeyinin belirlenmesi ve yaşlanma dahil bitki yaşam döngüsü boyunca bitki büyümesi, gelişimi, ve hayatta kalmasının birçok karmaşık yönüne aracılık eder.
Etilen; ayrıca kuraklık, su baskını, patojen saldırısı ve yüksek tuzluluk gibi çeşitli streslere yönelik adaptif yanıtların oluşumuna da aracılık eder. Örneğin su baskını sırasında etilen, oksinejasyon için hava dolu boşluklardan oluşan aerankim dokusunun oluşmasına yol açar. Bunun yanında etilen en çok, muz, armut ve elma gibi klimakterik meyvelerin olgunlaşmasındaki temel rolüyle bilinmektedir. Örneğin olgunlaşmış bir muzu, içinde olgunlaşmamış bir avokado içeren kağıt torbaya koymak, muzun ürettiği etilenin birikmesi nedeniyle avokadoların olgunlaşmasını hızlandıracaktır.
Etilen Tarım İçin Neden Önemlidir?
Etilene verilen yanıtların kontrol edilmesi, etilenin tarımsal ve bahçecilik değeri olan bitkiler üzerindeki geniş kapsamlı etkileri nedeniyle önemli bir ticari girişimdir. İlginç bir şekilde etilene karşı tepkiler; türe, gelişim aşamasına ve etilen konsantrasyonuna bağlı olarak zararlı ya da arzu edilebilir düzeyde olabilir. Örneğin çok fazla etilen, "Bir çürük üzüm, tüm salkımı bozar." ifadesinde uygun bir şekilde gösterildiği gibi ürünün bozulmasına yol açabilir.
Bu nedenle meyvelerin, sebzelerin ve çiçeklerin nakliyesi ve depolanması sırasında bozulmasını önlemek için maliyetli yöntemler kullanılmaktadır. Bu yöntemler, harici etileni uzaklaştırmak için adsorbanların ve temizleyicilerin kullanımını, etilen biyosentezini önlemek için SmartFresh gibi kimyasal inhibitörlerin kullanımını içerir. Mahsul büyümesi sırasında etilenin algılanmasının engellenmesi, yaprak ve çiçeklerin dökülmesini ve sebzelerin sararmasını da engelleyebilir.
Öte yandan etilen, etilen tepkilerinin oluşmasının istendiği durumlarda kasıtlı olarak uygulanabilir. Meyve olgunlaşması, tipik olarak, etilenin ticari bir sıvı formu olan etilen veya etefon kullanılarak hasat öncesi veya sonrasında bitkiye verilebilir. Etefon ayrıca çiçeklenmeye neden olması için ananas bitkilerine püskürtülür ve bitkinin eğilmesini engellemek içinse buğday bitkilerine uygulanır.
Etilen Hormonu Nasıl Keşfedildi?
İlginç bir şekilde, etilenin bir bitki hormonu olarak keşfi, çevrede istenmeyen etilen varlığının fark edilmesiyle meydana geldi. 19. yüzyılda aydınlatma için yaygın olarak "aydınlatma gazı", bir diğer adıyla kömür gazı kullanılıyordu. Gaz hatlarında sızmaların, ağaçların sokak lambaları etrafındaki yapraklarının dökülmesi gibi bitkilere büyük zararlar verdiği görüldü.
19. yüzyılın sonlarında doğru Dimitry Neljubow, etiyole bezelye fidelerinin laboratuvarında sızan aydınlatıcı gaz nedeniyle kısaltılmış ve kalınlaşmış epikotil ve yatay bükülme şeklinde meydana gelen tuhaf bir büyüme şekli sergilediğini gözlemledi. Neljubow, etilenin aydınlatıcı gazın biyolojik olarak aktif bileşeni olduğunu belirledi. Bu bulgu, etilenin geniş kapsamlı etkileri üzerine çok sayıda çalışmaya zemin hazırladı.
1934'de Richard Gane, bitkilerin etileni sentezlediğini keşfetti; Etilen biyosentezinin biyolojik aktivite ile korelasyonu, araştırmacıları bir gazın bitki hormonu olabileceği konusunda ikna etmeye yönelik önemli bir adımdı. Aslında etilen, herhangi bir organizmada tespit edilen ilk gaz halindeki sinyal molekülüdür.
Gaz Halindeki Bir Hormonun Diğer Hormonlardan Farklı Bir Yanı Var Mıdır?
Etilen, gaz olmayan hormonlardan birkaç yönden farklıdır. Etilen bitki içinde difüzyonla hareket eder ve memelilerdeki bir gaz hormon olan nitrik okside (NO2) benzer şekilde etki bölgesinde veya etki bölgesinin yakınında sentezlendiği düşünülmektedir. Etilen, hücre zarları boyunca yakınlardaki komşu hücrelere yayılabildiğinden, taşıyıcı proteinlerin etileni hedef hücrelere iletmesine gerek yoktur ve aslında, bu tür taşıyıcılar halihazırda tanımlanmamıştır.
Bunun yanında etilenin son öncül molekülü olan 1-aminosiklopropan-1-karboksilik asidin (ACC) taşıyıcı zar proteine sahip olduğu bilinmektedir. Ayrıca etilenin depolama veya deaktivasyon için yeniden başka moleküllere konjuge olduğu ya da yeniden kullanıldığı bilinmemektedir; etilen görevini icra ettikten sonra bitkiden uzaklaştırılır.
Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.
KreosusKreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.
Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.
PatreonPatreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.
Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.
YouTubeYouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.
Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.
Diğer PlatformlarBu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.
Giriş yapmayı unutmayın!Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.
Gaz halindeki bir hormonu yönetmek bitkiler için daha basitken, araştırmacılar için daha karmaşıktır. Etilen deneyleri genellikle hava geçirmez odalar gibi kapalı ortamlarda gerçekleştirilir. Ancak bazı durumlarda bu durumun üstesinden bitkilerin etilen yerine ACC ile muamele edilmesiyle gelinebilir.
Bitkiler, Etileni Nasıl Sentezler?
Bitkiler S-adenosil-L-metiyoninden (SAM) başlayarak iki aşamalı bir biyokimyasal yol kullanarak etilen sentezler. SAM, ACC sentaz (ACS) enzimi tarafından ACC'ye dönüştürülür. ACC daha sonra ACC oksidaz (ACO) enzimi tarafından etilene dönüştürülür. ACS ve ACO enzimlerinin her biri, üyeleri yaralanma, su baskını, kuraklık, mekanik basınç ve patojen saldırısı gibi iç gelişimsel ipuçlarına ve çevresel streslere yanıt olarak farklı şekillerde ifade edilen bir multigen ailesi tarafından kodlanır. Etilen, biyosentezi ayrıca fosforilasyonla düzenlenen ACC sentaz döngüsü tarafından kontrol edilir.
Bitkilerde Bir Tepkiyi Tetiklemek İçin Ne Kadar Etilen Gereklidir?
Etilen milyonda 0,01 ila 1,0 parça (ppm) gibi çok düşük konsantrasyonlarda biyolojik olarak aktiftir. Türe ve tepkiye bağlı olarak daha düşük veya daha yüksek hassasiyetle gözlemlenmektedir. Domates ve elma gibi bazı klimakterik meyveler onlarca ppm etilen üretebilir. Burada etilenin organik yakıtların kısmi yanmasının bir yan ürünü olduğunu ve bu nedenle orman yangınları, volkanik patlama ve araba egzozu gibi etmenlerden dolayı atmosferde bulunduğunu belirtmek gerekir. 1973'te yapılan bir çalışma Washington DC ve Maryland Üniversitesi'ni çevreleyen otoyol olan Beltway çevresinde 0,7 ppm'e kadar etilen tespit etti ve bu seviyeler, çevredeki bitki örtüsü üzerinde zararlı etkilere sahipti.
Etilen İnsanlar İçin Zararlı Mıdır?
İnsanın da dahil olduğu metazoanlar, etilen reseptör homologlarından yoksundur. Bitkilerin tersine, etileni algılamaz ve ona yanıt vermezler.
Bununla birlikte 1000 ppm ve üzerindeki yüksek etilen konsantrasyonları baş dönmesine ve sersemliğe yol açabilir. 20. yüzyılda birkaç on yıl boyunca etilen, genel olarak anestezik olarak kullanıldı. Antik Yunan'da Oracle of Delphi'nin yeraltı odasının altındaki jeolojik faylardan çıkan etilenin, kahinlerin trans benzeri durumlarından ve kehanet halüsiyonlarından sorumlu olduğu düşünülmektedir.
Saf etilen ile çalışırken en büyük tehlike patlama riskidir; çünkü etilen, yanıcı bir gazdır. Bununla birlikte domates gibi bir meyvede, patlayamayacak kadar az etilen vardır.
Etilen Sinyal Yolu Nasıl Belirlendi?
Etilen sinyal yolunun anlaşılmasındaki önemli gelişmeler, etilen yanıt mutantlarının izolasyonu ile başlatılan çiçekli bitki Arabidopsis thaliana'daki yolağın moleküler genetik araştırmalarından geldi. Mutantlar, 1980'lerin sonunda Arabidopsis'in genetik bir model organizma olarak geliştirilmesiyle eşzamanlı olarak Neljubow'un etiyole bezelye fidelerindeki gözlemine dayanan güçlü bir genetik tarama kullanılarak izole edildi. Etilene yanıt olarak Arabidopsis fideleri, kısa ve kalın bir hipokotil, normalden büyük bir apikal kanca ve kısa bir kök geliştirir. "Üçlü yanıt" olarak adlandırılan bu fenotip, laboratuvarda kolayca indüklenir ve yüksek oranda etilene verilen özgü bir yanıttır.
Karşılık gelen genlerin kromozom üzerinde yerinin belirlenmesi gibi haritalamaya dayalı yöntemler kullanılarak klonlanması, bilinen ilk bitki hormonu reseptörü olan ETR1 dahil olmak üzere birkaç anahtar bileşeninin tanımlanmasını sağladı. Bugün, etilen sinyalleşmesindeki tüm merkezi unsurlar Arabidopsis'te tanımlanmıştır. Yolağın en önemli mekanik yönleri; genetik, moleküler biyoloji, hücre biyolojisi ve biyokimyanın bir kombinasyonu kullanılarak açıklanmıştır. Başta domates olmak üzere diğer bitki türlerinde yapılan çalışmalar, bu bulguları daha da geliştirmiş ve desteklemiştir.
Etilen sinyal yolağı, bitkilerde yüksek oranda korunmuştur; 450 milyon yıldan daha uzun bir süre önce toprağın kolonileştirilmesinden daha önce bir alg atasına kadar uzanır.
Etilen Sinyal Yolu Nasıl Çalışır?
Etilen sinyalleşmesi aşağıda anlatılan benzersiz bir yolağı içerir:
- Etilen, endoplazmik retikulum membranında bir etilen reseptör kompleksi tarafından algılanır.
- Etilenin algılanması, EIN2 protein kompleksi içindeki bir anahtar proteinin kompleksten ayrılmasını tetikler.
- EIN2'nin çözünmüş kısmı, aksi takdirde iki ana transkripsiyon faktörünün 26S proteozomu tarafından degrede edilmesine yol açacak olan iki düzenleyici F-box proteininin translasyonunun baskılanmasında görev alır.
- İki transkripsiyon faktörünün hızlı stabilizasyonu, gen ekspresyonunun düzenlenmesi ile sonuçlanır.
Yol, büyük ölçüde negatif düzenlenmelere ve translasyon sonrası modifikasyonlara dayanır. Örneğin, aşağıda açıklandığı gibi etilen reseptörleri, etilen tespit edilmediğinde, etilen tespit edildiğinde aktive edici tepkilerin aksine, bu tepkileri bastırır. Etilen tepkilerinin bastırılması, protein fosforilasyonunu ve protein dönüşümlerini içerir.
Etilen Reseptörü, Ne Tür Bir Reseptördür?
Etilen reseptörü, beklenmedik bir şekilde, prokaryotlarda yaygın olan, ancak ökaryotlarda çok nadir görülen iki bileşenli sinyalleşme sisteminin histidin protein kinaz reseptörleri ile ilişkilidir. Bitkilerin etilen reseptör genini, büyük olasılıkla kloroplastın atası olan eski bir endosimbiyotik siyanobakteriden aldıkları düşünülmektedir. Bitkiler, örtüşen ve farklı işlevlere sahip küçük bir etilen reseptör gen ailesine sahiptir. Örneğin, Arabidopsis 5 farklı, domates 6 farklı etilen reseptörü genine sahiptir.
Tipik prokaryotik iki bileşenli reseptörlerde olduğu gibi, etilen reseptörü bir N-terminal ligand bağlama alanına ve ardından bir GAF alanına ve bir histidin protein kinaz alanına sahiptir. Bazı izoformlar ayrıca, iki bileşenli sistemin ikinci elemanı olan bir C-terminal alıcı alana sahiptir. Etilen reseptörlerinde etilen bağlanma alanı ER membranında bulunurken, GAF, histidin kinaz ve alıcı alanlar sitoplazmada bulunur. Etilen reseptörlerinin neden ER membranında bulunduğu açık değildir, ancak etilenin membranlar boyunca difüze olabilmesi göz önüne alındığında, reseptörün hücre yüzeyinde olma zorunluluğu yoktur. Etilen, zar içinde etilen bağlama bölgesinin konumu ile tutarlı olarak hidrofobik ortamlarda daha çözünürdür.
Etilen reseptörleri disülfür bağlı dimerler oluşturur ve her bir dimer, bir bakır iyonu kofaktörü yardımıyla tek bir etilen molekülünü bağlayabilir. Dimer, downstream proteinleri ile etkileşime girdikleri ER membranında kümeler halinde bulunur. Genellikle küçük molekülleri bağlamakla bilinen GAF alanı, etilen reseptör monomerleri ve ayrıca izomerler arasındaki protein-protein etkileşimlerini kolaylaştırır.
Etilen Reseptörleri Nasıl Sinyalleşir?
Bu, güzel bir sorudur. Sorunun cevabı şu anda en iyi genetik düzeyde anlaşılmıştır. Genetik analizlerden, reseptörlerin etilen tepkilerinin negatif düzenleyicileri olduğunu biliyoruz. Başka bir deyişle, etilen tepkileri, etilen reseptör sinyalleşmesi tarafından baskılanır. Bu baskılanma, etilen bağlanmasının yokluğunda meydana gelir ve Raf protein kinaz ailesine sekans benzerliği olan bir serin/treonin protein kinaz olan CONSTITUTIVE RESPONSE1'in (CTR1) reseptör aktivasyonu yoluyla sağlanır. CTR1 kinaz aktivitesi, yolu negatif olarak düzenler yani downstream sinyallerini engeller. Etilen reseptörlere bağlandığında, etilen reseptör sinyalleşmesi durur. Sonuç olarak, CTR1 artık etkinleştirilemez ve etilen sayesinde downstream sinyaller aktifleşebilir.
Bu model, çoklu etilen reseptör genlerindeki null mutasyonların ctr1 fonksiyon kaybı mutasyonlarına benzer yapıcı etilen yanıtları göstermesi, bunun tersine, dominant işlev kazancı reseptör mutasyonlarınıın etilen duyarsızlığına neden olması gerçeği ile desteklenir.
Etilen Reseptör Sinyalleşmesinin Biyokimyasal Mekanizması Nedir?
Bu hala tam olarak çözülebilmiş değildir. Standart iki bileşenli sistemde ligandın bağlanması, korunmuş bir histidin kalıntısının otofosforilasyonunu uyarır veya inhibe eder. Ardından fosfatın alıcı alanında korunan bir aspartata aktarılmasını izler. Garip bir şekilde, histidin kinaz aktivitesinin etilen reseptör sinyalleşmesinde önemli bir rol oynadığı görülmemektedir. Etilen reseptörleri in vitro olarak histidin ve/veya serin/treonin kinaz aktivitesi sergilemesine rağmen, her iki aktivite de kesin olarak etilen sinyalleşmesi ile ilişkilendirilememiştir.
Ek olarak, reseptörlerin aşağı yönde hareket eden iki bileşenli sinyalleşme elemanlarından ele edilen ipuçlarına rağmen, bunun etilen sinyalleşmesinin birincil modu olmadığını gösteren güçlü kanıtlar vardır. Bunun yerine etilen reseptörleri fiziksel olarak CTR1 ile ilişkilidir ve bu şekilde sinyal verir. Reseptörler ayrıca, CTR1, ETHYLENE-INSENSITIVE2 (EIN2) fosforilasyon substratı ile etkileşim gösterir. Genetik kanıtlar, etilen bağlanmasının reseptör sinyalleşmesini engellediğini gösterse de, temel soruya net bir cevap yoktur; Etilen bağlanması reseptördeki biyokimyasal aktiviteyi uyarır mı yoksa inhibe mi eder?
Her iki olasılığı da destekleyen deneysel veriler vardır. Karşıt-sezgisel olabilse de, bir olasılık CTR1 aktivasyonunun etilen bağlanması ile etilen reseptör aktivitesi tetiklendiğinde hafifletilen pasif bir sinyal mekanizması tarafından meydana gelmesidir. Henüz bilinmeyen reseptörler için eksiksiz yapısal veriler umarız ki bu soruya ışık tutacaktır. Ayrıca bitkilerin neden çoklu etilen reseptör izoformlarına sahip olduğu da açık değildir. Her ne kadar bireysel reseptörlerin spesifik yanıtları kontrol etmede farklı rollere sahip olduğuna dair kanıtlar varsa da, altta yatan mekanizmalar bilinmemektedir.
Etilen Sinyal Yolundaki Reseptörlerin Akış Yolunda Ne Olur?
CTR1'in akış aşağısındaki (İng: "downstream") etilen sinyali, etilen sinyal yolunun esrarengiz bir merkezi düzenleyicisi olan EIN2'nin fosforilasyon durumuna bağlıdır. EIN2, ER membranına, yaygın olarak korunan NRAMP metal iyon taşıyıcılarına sekans benzerliği olan N-terminal alanı tarafından bağlıdır. Ancak bu alanın biyokimyasal işlevi ve etilen sinyalleşmesindeki rolü henüz belirlenmemiştir. EIN2'nin C-terminal kısmı (C-END), sitosolik olan bitkiye özgü bir alandan oluşur ve bu alanın tek başına ekspresyonu, etilen yanıtlarının aktivasyonu için yeterlidir. Etilen yokluğunda CTR1 kinaz EIN2 C-END'i fosforile eder, böylece C-END'in sinyal göndermesini engeller. Reseptörler etileni tespit ettiğinde, CTR1 inaktive olur ve sonuç olarak fosforile edilmemiş EIN2 C-END proteolitik olarak ER-ankorlu NRAMP alanından salınır. Bölünmüş C-END daha sonra iki F-box proteinin, EIN3-BINDING F-BOX1 ve 2'nin (EBF1/2) translasyonunu, EBF1/2 mRNA'sının 3' işlenmemiş bölgelerine bağlanarak bastırır.
mRNA kaderlerinin kararlaştırıldığı P-cisimleri olarak bilinen ayrı sitoplazmik alanlarda meydana gelen bu baskılama, etilen sinyalleşmesinde çok önemlidir çünkü çekirdekte, EBF1/2 proteinleri, iki ana transkripsiyon faktörünün, esasen bilinen tüm etilen yanıtları için gerekli olan EIL1 ve EIN3'ün proteolitik bozulmasını kontrol eder. Etilen yokluğunda SCFEBF1/EBF2 ubikutin bağlama kompleksinde ubikitilasyon ve degredasyon için EBF1/2, EIN3/EIL1 kompleksini işaretler; bu sinyal yolundaki negatif düzenlenmenin bir başka örneğidir. Etilen algılandığında, EIN2, EBF1/2'nin translasyonunu bastırır. Böylece EIN3/EIL1 transkripsiyon faktörlerinin çekirdekte hızla birikmesine izin vererek etilene karşı hızlı yanıtlara yol açar. Ayrıca bölünmüş EIN2 C-END'in aşağı akıştaki etilen sinyalleşmesini etkinleştirmek için çekirdeğe girmesi gerektiğine dair anıt vardır. Ancak çekirdekte C-END'in tam işlevi bilinmemektedir.
Transkripsiyonel Olarak Ne Olur?
EIN3'ün, geri besleme döngüleri ve çok sayıda diğer hormonların sinyal yolaklarında bilinen genlerin aktivasyonunu içeren birkaç dinamik gen ekspresyon dalgasını tetikleyen bir transkripsiyonel kaskadı başlattığı gösterilmiştir. EIN3'ün birincil hedefleri, APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) ailesindeki transkripsiyon faktörü genlerini içerir. Örneğin, ERF1, bir transkripsiyonel kademeli etilen sinyalleşmesinde daha fazla ekspresyonu tetikler. Gen ekspresyonundaki bu kapsayıcı değişiklikler, çeşitli hücresel, metabolik ve fizyolojik yanıtlar dizisiyle sonuçlanır.
Etilen Araştırmalarının Geleceği Nedir?
Bitki büyümesi, gelişimi ve stres tepkilerinin çeşitli çevresel ve endojen sinyallerin entegrasyonunu gerektirdiği düşünüldüğünde, diğer hormonların sinyalleriyle etilen sinyallerinin karışmasına artan bir ilgi vardır. Oksin, giberellinler, brassinosteroidler, absisik asit, sitokininler ve jasmonik asit bitki hormonları ile çok sayıda sinyal kesişmesi bildirilmiştir. Sinyal kesişmesi, etilen biyosentezinin düzenlenmesi yoluyla gerçekleştirilebilir. Bu tür yolları aydınlatmak için daha çok çalışmaya gerek vardır.
Etilen sinyali, diğer hormonların biyosentezini indükleyebilir. Örneğin derin suda pirinçte, etilen sinyali internod uzamasını işaret eden giberellini indükleyebilir. Bu sayede pirinç bitkilerinin tamamen suyun altında kalması engellenmiş olur. Sinyal kesişmesi, etilen sinyal yolunda da meydana gelebilir. Örneğin EIN3/EIL1, giberellinler ve jasmonik asit tarafından kontrol edilen transkripsiyon faktörleriyle fiziksel olarak ilişkilidir. ve bu hormonlarla koordineli olarak gen ekspresyonunu teşvik eder veya inhibe eder. EIN2 mutasyonlarının, diğer sinyal yollarının bileşenleri için genetik taramalarda elde edildiği göz önüne alındığında, EIN2'nin translasyon düzenlenmesindeki rolü de bir sinyal entegrasyon noktası olabilir.
Sinyal kesişmesi ve transkripsiyonel ağları anlamada devam eden gelişmeler, bir gün belirli bitki tiplerindeki etilen tepkilerinin modellenmesine izin verecek olan etilen sinyalleşme ağlarının daha derin bir şekilde anlaşılmasını sağlayacaktır. Bu tür bilgilerin uygulamaları, tarımsal gelişmeler için muazzam bir potansiyele sahiptir. Daha şimdiden etilen biyolojisi anlayışımız, özellikle genetik yollarla etilen tepkilerini manipüle etmek için yeni stratejiler sağlayabilir. Örnekler arasında Arabidopsis'in baskın bir ETR1-1 genini ifade ederek çiçek yaşlanmasının geciktirilmesi ve etilenle indüklenebilir bir ERF transkripsiyon faktör geninin (SUB1A) eklenmesiyle sele toleranslı, yüksek verimli pirinç bitkilerinin yetiştirilmesi yer alır.
Etilen biyolojisini bilmeden manipüle ettiğimiz günler, yani örneğin eski Çinlilerin armutları olgunlaştırmak için tütsü yaktıkları ve erken Mısırlıların incirleri olgunlaşmalarını sağlamak için parçaladıkları zamanlar, artık çok geride kaldı.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 6
- 4
- 3
- 3
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- Çeviri Kaynağı: BMC Biology | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/12/2024 19:37:33 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/10143
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.
This work is an exact translation of the article originally published in BMC Biology. Evrim Ağacı is a popular science organization which seeks to increase scientific awareness and knowledge in Turkey, and this translation is a part of those efforts. If you are the author/owner of this article and if you choose it to be taken down, please contact us and we will immediately remove your content. Thank you for your cooperation and understanding.