Bütün Dünyayı Etkisi Altına Alan SARS-CoV-2'nin İç Yapısına Yolculuk!
SARS-CoV-2'nin Çalışma Biçimini, Bağışıklık Sisteminin Virüse Tepkisini ve Aşı ile İlaç Hedeflerimizi Grafiklerle Öğrenin!
Bilim insanları, yeni koronavirüs ve neden olduğu COVID-19 hastalığı hakkındaki tüm gizemleri ortaya çıkarabilmek için şaşırtıcı derecede kısa bir sürede inanılmaz miktarda bilgi ürettiler.
Binlerce farklı koronavirüs gezegende yaşayabilir. Bunlardan dördü soğuk algınlıklarımızın çoğundan sorumludur. Diğer ikisi ise endişe verici salgınları tetikledi: 2002'de bir koronavirüs, dünya çapında 770'den fazla insanı öldüren, ağır akut solunum yolu yetersizliği sendromuna (SARS) neden oldu. 2012'de 800'den fazla insanın canını alan farklı bir tür koronavirüs, Orta Doğu solunum sendromunu (MERS) başlattı. SARS'ın etkisi bir yıl içinde bitti fakat MERS hala devam ediyor.
En yeni koronavirüs SARS-CoV-2, kısmen daha ölümcül bir salgın yarattı çünkü bir kişiye bulaştığında uzun süre fark edilmeden kalabiliyor. SARS hastası olan bir kişi, ateş ve kuru öksürük gibi belirtiler gösterdikten sonra 24 ila 36 saate kadar hastalığı bulaştırmaz, hasta hisseden insanlar başkalarını hasta etmeden izole edilebilir. Ancak COVID-19 olan insanlar, belirgin semptomlar göstermeden önce virüsü bulaştırabilir. Hasta hissetmeden enfekte olmuş insanlar, koronavirüsü çevrelerindeki insanların hava sahasına solurken; işe gider, alışveriş yapar, yemek yer ve partilere katılırlar. Virüs, insan vücudunun içinde çok uzun süre fark edilmeden kalabilir, çünkü genomu bağışıklık sistemimizin alarm vermesini geciktiren proteinler üretir. Bu arada virüs gizlice çoğaldıkça akciğer hücreleri ölür. Bağışıklık sistemi çağrıyı duyduğunda, aşırı hızlı çalışıp kurtarmaya çalıştığı hücreleri öldürebilir.
Aşağıdaki grafiklerde Scientific American, SARS-CoV-2'nin insan hücrelerinin içine nasıl gizlendiğini, kendi kopyalarını oluşturduğunu ve enfeksiyonu nasıl yaydığına dair ayrıntılı açıklamalar sunuyor. Grafiklerde, bağışıklık sisteminin virüs parçacıklarını nasıl nötralize etmeye çalışacağını ve SARS-CoV-2'nin bu çabayı nasıl engelleyebileceğini göreceğiz. Ayrıca yeni virüs kopyalarının, onları yok edebilecek mutasyonları önlemek için düzeltme kapasitesi gibi şaşırtıcı özellikleri inceleyeceğiz. İlaçların ve aşıların davetsiz misafirleri nasıl yenebileceğini de göreceğiz.
Gen Makinesi
Bir kişinin burnuna veya ağzına giren bir SARS-CoV-2 virüsü yaklaşık 100 nanometre çapındadır ve sadece bir elektron mikroskobu ile görülebilir. Bir yağ zarının içinde, virüsün genetik kodunu tutan bir molekül olan bir RNA bükümünü koruyan bir protein küresidir. "S" olarak adlandırılan proteinler, yüzeyden uzayan ve insan hücresine tutulan sivri uçlar oluştururlar, böylece virüs içeri kayabilir. Taç görünümü virüse adını verir. Yapısal proteinler (N, M ve E) yeni virüslerin oluşmasına yardımcı oldukları hücre içinde hareket ederler.
SARS-CoV-2 Nasıl Saldırıya Geçer?
SARS-CoV-2 virüsü, bir kişinin burnuna veya ağzına girer ve yüzeyde ACE2 reseptörü olan bir akciğer hücresine ulaşana kadar hava yolunda yüzer. Virüs bu hücreye bağlanır, içeri kayar ve kendi kopyalarını oluşturmaya yardımcı olması için hücrenin mekanizmasını kullanır. Hücreyi ölü olarak bırakarak diğer hücrelere nüfuz ederler. Enfekte hücreler patojenleri nötralize etmeye veya yok etmeye çalışmak için bağışıklık sistemine alarm gönderir ancak virüsler sinyalleri önleyebilir veya kesebilir, bir kişi semptomları göstermeden önce, virüse çoğalmak için zaman kalır.
1.İlk Olarak Akciğer Hücresine Bağlanır
Bir virüsün mızrak proteini bir ACE2 reseptörüne kilitlendiğinde, bir proteaz enzimi mızrak uçlarını keser. ACE2 normalde kan basıncını düzenlemeye yardımcı olur.
2.Akciğer Hücresinin İçine Girer
Virüs, mızrak gövdesinin sıkıştırılmış bir parçası olan füzyon makinelerini yay gibi açarak serbest bırakır. Virüs ve akciğer hücre zarları kaynaşır. Mızrak başının kesilmesi, füzyon makinelerinin açılmasını sağlar. Bu işlem yaklaşık 10 dakika sürer.
3.Çoğalırlar ve Bu Çoğalma Patlak Verir
Virüs RNA'sı, bir hücrenin içine girdikten sonra, hücrenin ribozomlarının genleri proteinlere çevirmesi için yaklaşık iki düzine gen sunar. Bu proteinlerin bazıları endoplazmik retikulumu gererek koruyucu veziküller veya keseler oluşturur.
Virüs, veziküllerin içinde RNA kopyaları yapmak için polimeraz adı verilen kendi RNA kopyalama makinesini kullanır. Kopyaların bazıları, mızrak proteinleri gibi daha viral proteinler yapmak için kullanılır. Diğerleri akciğer hücresinden çıkan yeni virüslere dönüşür.
N proteinleri, stabil kalmasına yardımcı olmak için RNA'ya bağlanır. Ek veziküller (endoplazmik retikulum ve Golgi kompleksinden gelir) mızrak, M ve E proteinlerini birleştirir.
Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.
Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.
Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.
Ve sonunda çoğalma patlak verir. Yeni oluşan virüsleri taşıyan veziküller hücre zarıyla birleşerek virüslerin çıkmasına izin veren bir kanal açar. Bir hücre yüzlerce virüs kopyası çıkarabilir. Genellikle ölür çünkü kaynakları tüketilmiştir veya bağışıklık sistemi tarafından öldürülmüştür. Bazı virüsler daha fazla hücreye bulaşmak için yola çıkarlar. Diğerleri havaya karışır. Bu süreç yaklaşık olarak 10 saat sürer.
Bağışıklık Sistemi Nasıl Yanıt Verir?
Enfekte hücreler, patojenleri nötralize etmeye veya yok etmeye çalışmak için bağışıklık sistemine alarm gönderir, ancak virüsler sinyalleri önleyebilir veya kesebilir. Bir kişi semptomları göstermeden önce çoğalmak için zaman kalır virüslere.
4.Enfeksiyon Başladığında, Doğal Bağışıklık Sistemi Akciğer Hücrelerini Korumaya Çalışır
Enfekte bir hücre, virüslerin (kırmızı noktalar) girmesini veya çoğalmasını durdurmaya çalışan moleküller oluşturmak için komşu hücreleri uyaran interferon proteinlerini serbest bırakır. İnterferon ayrıca kan dolaşımındaki makrofajlar gibi virüsleri yutabilecek hücreleri de çağırır. Bu 0-3 gün arasında sürer.
5.Uyarlanabilir Bağışıklık Sistemi Bunu Takip Eder
İnterferon ayrıca B hücrelerini uyarır. Mızrak proteininin kısımlarını tanıyabilen ve ona bağlanabilen, mızrak proteinlerinin bir akciğer hücresine tutunmasını önleyebilen “nötralize edici antikorlar” üretir. Interferon ayrıca virüsleri yok edebilen ve içindeki virüsler çoğalmadan önce enfekte olmuş hücreleri öldürebilen T hücrelerini toplar. Bazı B ve T hücreleri, virüsün gelecekteki bir istilasını hızlı bir şekilde tanımlayabilen ve bunlarla savaşabilen hafıza hücreleri haline gelir. Bu 6–11 gün arası sürer.
6.Virüs Karşı Tedbir Alır
SARS-CoV-2, bağışıklık sisteminin yanıtını engellemek için çeşitli taktikler kullanır.
Taktik 1: Virüs şeker molekülleriyle kendini kamufle edebilir. Esnektir ve salınırlar, antikorların virüse yapışmasını engelleyerek nötralize ederler.
Normal olarak, sensör proteinleri gelen virüsleri yabancı olarak tanır ve hücre çekirdeğine haberci RNA molekülleri yapmak için genleri açmasını söyler. Moleküller, bağışıklık sistemi hücrelerini uyarmak üzere hücreden çıkan interferon proteinleri yapmak için ribozomlara talimat verir.
Taktik 2: Birkaç SARS-CoV-2 proteininin sensör proteinlerinin hareket etmesini engellediği veya ribozom talimatlarına müdahale ettiği düşünülmektedir.
İlaçlar ve Aşılar
Ticari ve üniversite laboratuvarları, SARS-CoV-2 virüsünün neden olduğu hastalık olan COVID-19 ile savaşmak için 100'den fazla ilacı araştırmaktadır. Çoğu ilaç virüsü doğrudan yok etmez ancak vücudun bağışıklık sisteminin enfeksiyonu temizlemesine izin verecek kadar ona müdahale eder. Antiviral ilaçlar genellikle bir virüsün bir akciğer hücresine yapışmasını durdurur, bir hücrenin istila etmesi durumunda bir virüsün çoğalmasını önler veya bağışıklık sistemi tarafından enfekte kişilerde ciddi semptomlara neden olabilecek aşırı reaksiyonu azaltır. Aşılar, bağışıklık sistemini gelecekteki bir enfeksiyonla hızlı ve etkili bir şekilde savaşmak için hazırlar.
İlaç Hedefi 1: Virüsün Hücreye Girmesini Önlemek
Bir ilaç veya terapötik antikorlar, mızrak proteinine kilitlenebilir ve akciğer hücresinin ACE2 reseptörüne bağlanmasını önleyebilir. Bir ilaç ayrıca proteaz enzimine yapışabilir ve mızrak proteinini kesmesini önleyebilir, böylece virüs hücreyle kaynaşamaz.
İlaç Hedefi 2: Arızalı Virüsleri Teşvik Etmek
Bir ilaç, virüsleri devre dışı bırakacak kopyalanan virüslerdeki hataları düzeltmek için ExoN adlı başka bir enzim ile çalışan viral RNA polimeraz enzimini etkileyebilir, bu da daha kötü kopyalara ve daha az iyi olanlara yol açabilir.
İlaç Hedefi 3: Virüsü Kapatmak
Bir ilaç, virüs proteinlerinin yapımında veya virüsün genomunu kopyalamak için kullandığı veziküllerin yapımında kullanılanlar gibi virüsün ihtiyaç duyduğu akciğer hücresi proteinlerine müdahale edebilir.
İlaç Hedefi 4: Hiperimmün Yanıtı Azaltmak
Bağışıklık hücreleri çok fazla akciğer hücresini yok edebilir, akciğerleri boğmak için yeterli mukus benzeri atık oluşturabilir, kurbanları ventilatörlere zorlayabilir. Bir alarm proteininin veya interlökin-6 gibi sitokinin aşırı üretimi, bağışıklık hücrelerini aşırı hıza sokabilir. İlaçlar sitokinlerin bazılarını bağlayarak inhibe edebilir.
Aşı Seçenekleri
Bir aşı, bağışıklık sistemini bir virüsün güvenli bir versiyonuna maruz bırakır, böylece patojeni durduracak ve belleğe koyacak antikorlar üretmeye çalışabilir, böylece bir enfeksiyon sırasında gerçek virüsle savaşmaya hazırdır. Aşı yapıcılar, aşıların formüle edilmesi ve seri üretilmesi için çeşitli stratejiler izlemektedir.
Aşılar Nasıl Çalışır?
Antikorun Hazırlanması: SARS-CoV-2 virüsünün aşı versiyonu, gerçek virüse ait antijen adı verilen çeşitli moleküller sunar. Antijen sunan hücreler onları yakalar ve yardımcı T hücrelerini ve B hücrelerini sağlar.
T hücreleri, B hücrelerinin gerçek virüse bağlanabilecek antikorlar üretmelerine yardımcı olur. Yardımcı T hücreleri de katil T hücrelerine enfekte olmuş akciğer hücrelerini yok etmenin yollarını tasarlamalarını söyler.
B ve yardımcı T hücrelerinin bazıları, bir enfeksiyon sırasında B ve T hücrelerini hızla harekete geçirebilmeleri için talimatları saklayan bellek hücrelerine dönüşür.
SARS-CoV-2 Aşı Geliştirme Stratejileri
Uzmanlar, virüsün aşı versiyonlarını yapmak için en az altı strateji araştırıyorlar. Üçü, virüsün değiştirilmiş bir versiyonunun insanlara enjekte edilmesini içeriyor.
Bu üçü, mızrak proteini gibi virüsün genlerini haritalamayı ve DNA, RNA veya güvenli bir virüse sokmayı ve insanlara enjekte etmeyi içeriyor.
Gizemli Koronavirüs Genomu
SARS-CoV-2 genomu yaklaşık 29.900 baz uzunluğunda bir RNA dizisidir. İnfluenza yaklaşık 13.500 baza sahiptir ve soğuk algınlığına neden olan rinovirüslerin yaklaşık 8.000 bazı vardır. (Bir baz, RNA ve DNA'nın yapı taşları olan bir çift bileşiktir.) Genom çok büyük olduğundan, çoğaltma sırasında virüsü kıracak birçok mutasyon meydana gelebilir ancak SARS-CoV-2 kopyaları düzeltebilir. Bu kalite kontrol, insan hücrelerinde ve DNA virüslerinde yaygındır, ancak RNA virüslerinde oldukça nadirdir. Uzun genom ayrıca tam olarak anlaşılmayan, bazıları bağışıklık sistemimizden kurtulmasına yardımcı olabilecek yardımcı genlere sahiptir.
Düzeltme Olayı
SARS-CoV-2 genomu çok uzun olduğu için, yeni koronavirüsün daha fazla protein oluşturmasına ve belki de diğer RNA virüslerinden daha karmaşık replikasyon stratejileri gerçekleştirmesine olanak tanıyan çok miktarda bilgiyi kodlayabilir. Bu avantajlı proteinlerden biri, virüsün kopyaları hazırlanırken düzeltmesine yardımcı olan eksonükleaz (ExoN) adı verilen bir enzimdir. Bu enzimi sadece yaklaşık 20.000 bazdan daha uzun genomlu virüsler üretir.
Bir SARS-CoV-2 virüsü bir akciğer hücresini enfekte ettikten sonra, polimeraz adı verilen bir enzim RNA'sının kopyalarını oluşturmaya başlarken, başka bir enzim olan ExoN rastgele mutasyonlar bulur ve bu genetik hataları kopyalardan çıkarır.
Yardımcı Genler
Yardımcı genler olarak adlandırılan genomun olağandışı, kısa parçaları yapısal protein genleri ile kümelenir. Araştırmacılar ne yaptıklarından henüz emin değiller. Bazılarının virüsün bağışıklık sisteminden kaçmasına yardımcı olan proteinleri kodladığı düşünülmektedir.
İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!
Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.
Soru & Cevap Platformuna Git- 10
- 7
- 5
- 3
- 2
- 1
- 1
- 0
- 0
- 0
- 0
- 0
- Çeviri Kaynağı: Scientific American | Arşiv Bağlantısı
Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?
Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:
kreosus.com/evrimagaci | patreon.com/evrimagaci
Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 18/01/2025 06:09:27 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/8966
İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.
This work is an exact translation of the article originally published in Scientific American. Evrim Ağacı is a popular science organization which seeks to increase scientific awareness and knowledge in Turkey, and this translation is a part of those efforts. If you are the author/owner of this article and if you choose it to be taken down, please contact us and we will immediately remove your content. Thank you for your cooperation and understanding.