Bu yazı, Neuroscience News isimli kaynaktan birebir çevrilmiştir. Çevirmen tarafından, metin içerisinde (varsa) açıkça belirtilen kısımlar haricinde, herhangi bir ekleme, çıkarma veya değişiklik yapılmamıştır. Bu içerik, diğer tüm içeriklerimiz gibi, İçerik Kullanım İzinleri'ne tabidir.

İnsanlar da tıpkı diğer hayvanlar gibi, yeni becerilerde uzmanlaşmak için farklı duyusal verilerin algılanmasına veya sürekli değişen bir ortama adapte olmaya olanak sağlayan muazzam bir öğrenme kabiliyetine sahiptir. Fakat, öğrenmeyi sağlayan mekanizmaların birçoğu henüz tam olarak anlaşılamamıştır.

Sinirbilimdeki en büyük zorluklardan biri, sinaptik bağların, uyumsal davranışları pekiştirmek için nasıl değiştiklerini açıklamaktır. Cenevre Üniversitesi’ndeki (UNIGE) sinirbilimciler, beyin korteksindeki sinaptik öğrenme mekanizmalarının, beynin daha derinlerindeki bölgelerinden gelen geri bildirime bağlı olduklarını gösterdiler ve bu geribildirimin, belirli engelleyici nöronları açıp kapayarak sinaptik güçlenmeyi nasıl sağladığını kesin olarak ortaya çıkardılar.

Bu çalışma, algısal öğrenmenin mekanizmalarını anlamlandırmamızda önemli bir kilometre taşı olmanın yanında, bilgisayarlı öğrenme sistemleri ve yapay zeka alanlarına da ışık tutabilir.

Beynin dış ve en büyük bölgesi olan korteks, ileri bilişsel fonksiyonlar, karmaşık davranışlar, algılama ve öğrenme için oldukça önemlidir. Duyusal bir uyaranın kortekse ulaşması durumunda, beynin diğer bölgelerinden bu uyaranla bağlantılı olan kısma geçmeden önce korteks uyaranı işler ve verilerini filtreler. Akabinde, uyaranların ulaştığı beyin bölgelerinin bazıları kortekse bilgi gönderir.

Geri bildirim sistemleri olarak bilinen bu döngülerin, kortikal ağların işleyişi ve yeni bir duyusal veriye uyum sağlamaları için şart olduğu düşünülmektedir. Bu çalışmayı yürüten, UNIGE Tıp Fakültesi’nde temel sinirbilimleri profesörü olan Anthony Holtmaat bunu şöyle açıklıyor:

Duyusal bir uyarana karşılık vermek adına gelişmiş bir yetenek olan algısal öğrenme için, sinirsel devreler öncelikle gelen duyusal verinin önemini değerlendirmeli, sonra da bu veriyi işleyiş şekillerini sadeleştirmelidirler. Geribildirim sistemleri bir noktada, görevleri veriyi beynin diğer bölgelerine ulaştırmak olan sinapsların, bunu uygun biçimde yaptıklarını doğrularlar.

Bıyıklar, Geri Bildirim Sistemlerini Nasıl Aydınlatır?

Bir farenin burnundaki bıyıklar dokunsal algılama için özelleşmiştir ve hayvanın içinde bulunduğu ortamın durumunu kavramasında önemli bir rol oynar. Beyin korteksinin bıyıklardan gelen duyusal veriyi işleyen kısmı, dokunsal çevreyle ilgili bilgileri öğrenmek için sinapslarını sürekli optimize eder. Dolayısıyla bu durum, geri bildirim sistemlerinin sinaptik öğrenme mekanizmalarındaki rolünü kavrayabilme açısından ilginç bir model teşkil eder.

UNIGE sinirbilimcileri bıyıklarla bağlantılı bir geri bildirim devresini ayrıştırıp, elektrotlar kullanarak korteksteki nöronların elektriksel aktivitesini ölçtüler. Ardından, korteksin duyusal veriyi işleyen kısmını uyararak bu veriyi taklit edip, aynı zamanda ışık yardımıyla geri bildirim devresini kontrol ettiler. Holtmaat ekliyor:

Canlı organizmanın içinde bunu yapmak imkansızken canlının dışında geliştirilen bu model, geribildirimi duyusal girdiden bağımsız bir şekilde kontrol etmemize olanak sağladı. Bununla birlikte, duyusal girdinin geribildirimle bağlantısını kesmek, ikisi arasındaki etkileşimin sinaptik güçlenmeyi beraberinde getirdiğini anlamak adına çok önemliydi.

Nöronların Veriyi Geçirmesini Engellemek...

Araştırma takımı, her iki bileşenin de ayrı ayrı tetiklendiklerinde çok sayıda nöronu aktive ettiklerini buldular. Bununla beraber, iki bileşen aynı anda etkinleştirildiğinde bazı nöronların aktivitelerini azalttıkları görüldü. Çalışmanın başyazarı UNIGE Tıp Fakültesi’nden Leena Williams bu durumu şöyle ifade ediyor:

İlginçtir ki, duyusal girdi ve geribildirim bir arada görüldüğünde engellenen nöronlar, genellikle algılama için önemli olan nöronları engelliyorlar. Bu durum, engellemenin engellenmesi veya şartlı refleks yitimi olarak bilinmektedir.

Dolayısıyla, bu nöronlar, gelen bir veri için genelde kapalı olan bir geçit gibi davranırlar. Geribildirim geldiğinde ise, öncelikli duyusal verileri gözeten sinapsların güçlerini artırmalarına olanak sağlayan bu geçit açılır. Bu çalışma ile, geribildirimin, sinaptik bağlantıları ileride gelecek verilere daha iyi hazırlanmaları için nasıl en uygun hale getirebileceğini belirtmiş olduk.

Böylece, UNIGE sinirbilimcileri bu mekanizmaya dahil olan nöronları tam olarak tanımlamış oldular. Bir sonraki aşamada ise, bir farenin yeni bir duyusal veri öğrenmesi gerektiğinde veya fare dokunsal çevresini keşfettiğinde engelleyici nöronların tahmin edildiği gibi davranıp davranmadığını doğrulamak için, çalışmanın sonuçlarını gerçek hayatta test edecekler.

Derin Öğrenme: Doğal Zekayı Taklit Etmek

Beyin devreleri kendilerini nasıl optimize eder? Bir sistem kendi etkinliğini okuyarak kendisini nasıl eğitebilir? Bu soru, hayvanlarda öğrenme ile bağlantılı olması dışında, makine öğrenmesinin de temelini oluşturur.

Bazı derin öğrenme uzmanları yapay zeka sistemlerini geliştirmek için beyin devrelerini taklit etmeye çalışmaktadır. UNIGE takımı tarafından yapılan çalışmadakine benzer bulgular, makine öğrenmesinin kendini organize edebilen ve yeni bir verinin işlenişini optimize edebilen devre modelleri üzerine yoğunlaşan bir dalı olan güdümsüz öğrenme için önem teşkil edebilir. Bu da, örneğin, verimli ses ve yüz tanıma programlarının geliştirilmesi adına önemlidir. 

Bu İçerik Size Ne Hissettirdi?
  • 5
  • 4
  • 2
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 0
  • 0
  • 0
Kaynaklar ve İleri Okuma

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 20/08/2019 20:28:11 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/707

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Soru Sorun!
Öğrenmeye Devam Edin!
Evrim Ağacı %100 okur destekli bir bilim platformudur. Maddi destekte bulunarak Türkiye'de modern bilimin gelişmesine güç katmak ister misiniz?
Destek Ol
Gizle
Türkiye'deki bilimseverlerin buluşma noktasına hoşgeldiniz!

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
“Bir kral, ulusu için mücadele eder. Bir kahraman ise herkes için...”
Will Beall
Geri Bildirim Gönder