Paylaşım Yap
Tüm Reklamları Kapat

Ağ Modelleri Nelerdir? Ağ Biliminde Nasıl Kullanılırlar?

5 dakika
1,133
Ağ Modelleri Nelerdir? Ağ Biliminde Nasıl Kullanılırlar? Silicon Republic
Evrim Ağacı Akademi: Ağ Bilimi Yazı Dizisi

Bu yazı, Ağ Bilimi yazı dizisinin 3. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Ağ Bilimi Nedir? Bir "Ağ" Nasıl Tanımlanır? Ağ Türleri Nelerdir?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Ağ bilimi literatüründe birçok farklı ağ topolojisi bulunur. Ancak bu yaklaşımlar temelde birkaç temel ağ modellerine dayanmaktadır. Ağ modellerini oluşturan temel topolojiler yüzük örgü (İng: "ring lattice"), küçük dünya (İng: "small world"), Erdös rassal, çekirdek çevresi (İng: "core periphery"), ölçekten bağımsız (İng: "scale-free") ve gözeli (İng:"cellular") şeklindedir. Bu temel topolojiler aşağıda gösterilmiştir:

Yüzük örgü topolojisinde her düğüm, kendi komşusuna bağlıdır. Küçük dünya topolojisinde ise her düğüm birçok komşu düğümüne ve birkaç uzak düğüme bağlıdır. Erdös rassal topolojide her düğüm diğer düğümlere rastgele şekilde bağlıdır. Çekirdek çevresi topolojide düğümler yalnızca merkezi düğümlere, merkezi düğümler de birbirine bağlıdır. Ölçekten bağımsız topolojide birkaç merkezi düğüm diğer düğümlere bağlıdır. Gözeli topolojide ise ağ komünitelere ayrılmıştır; diğer bir deyişle düğüm grupları vardır ve her grup kendi içerisinde sıkı, diğer gruplarla seyrek bağlanmıştır.

Ağ biliminin tarihsel gelişimi göz önünde bulundurulduğunda üç adet teorik modelin temel modeller olduğu ve literatürdeki makale ve kitaplarda ağırlıklı olarak geçtiği görülmektedir. Bunlar Rassal ağlar (Erdös rassal), ölçekten bağımsız ağlar ve küçük dünya ağlarıdır.

Tüm Reklamları Kapat

Ağ Modelleri

Rassal Ağ Modeli

Rassal ağlar (İng: "random networks"); düğüm sayısının belli, diğer tüm parametrelerin rastgele olduğu ağlardır. Diğer bir deyişle NN adet düğümün arasındaki EE adet bağlantı rastgele yerleşmiştir. Yani her iki düğüm arasında belli bir pp bağlanma olasılığı vardır ve E E sayısı da buna göre belirlenir.

Bağlanma olasılığından ötürü rassal ağlarda hiçbir düğüm arasında bağlantı olmayabilir veya her düğüm arasında bağlantı da olabilir. Bu nedenle daha doğru bir tanımlama yapılırsa, tek bir ağ üzerinden rastgeleliğin konuşulması doğru değildir. Bunun yerine G(N,p)G(N,p) şeklinde bir ağlar kümesinin tanımlanması ve içindeki her elemanın (her bir GG ağı)

P(G)=pE(1−p)(N2)−EP(G) = p^{E}(1-p)^{\binom{N}{2}-E}

olasılığına göre elde edilmesi gereklidir. Görüldüğü üzere rassal ağlarda sadece iki düğüm arasındaki bağlantı olasılığı sabitlenir. Bağlantı sayısı da başlangıçta sabit olmamakla birlikte beklenen değeri hesaplanabilir. EE adet bağlantıya sahip bir ağın kümeden seçilme olasılığı

Tüm Reklamları Kapat

P(E)=((N2)E)pE(1−p)(N2)−EP(E) =\dbinom{\binom{N}{2}}{E} p^{E}(1-p)^{\binom{N}{2}-E}

şeklindedir ki bu da Binom dağılımıdır. Ancak ağın büyüklüğü yani düğüm sayısı çok arttığı zaman derece dağılımı Poisson dağılımını verir. Bir rassal ağda EE sayısı belli ise ortalama derece ve kümelenme katsayısı için sırasıyla şunlar yazılabilir:

<k>=2EN , C=<k>N−1<k>= \frac{2E}{N}\space, \space C=\frac{<k>}{N-1}

Bu ağ topolojisine Erdös-Renyi modeli de denmektedir.

Evrim Ağacı'ndan Mesaj

Aslında maddi destek istememizin nedeni çok basit: Çünkü Evrim Ağacı, bizim tek mesleğimiz, tek gelir kaynağımız. Birçoklarının aksine bizler, sosyal medyada gördüğünüz makale ve videolarımızı hobi olarak, mesleğimizden arta kalan zamanlarda yapmıyoruz. Dolayısıyla bu işi sürdürebilmek için gelir elde etmemiz gerekiyor.

Bunda elbette ki hiçbir sakınca yok; kimin, ne şartlar altında yayın yapmayı seçtiği büyük oranda bir tercih meselesi. Ne var ki biz, eğer ana mesleklerimizi icra edecek olursak (yani kendi mesleğimiz doğrultusunda bir iş sahibi olursak) Evrim Ağacı'na zaman ayıramayacağımızı, ayakta tutamayacağımızı biliyoruz. Çünkü az sonra detaylarını vereceğimiz üzere, Evrim Ağacı sosyal medyada denk geldiğiniz makale ve videolardan çok daha büyük, kapsamlı ve aşırı zaman alan bir bilim platformu projesi. Bu nedenle bizler, meslek olarak Evrim Ağacı'nı seçtik.

Eğer hem Evrim Ağacı'ndan hayatımızı idame ettirecek, mesleklerimizi bırakmayı en azından kısmen meşrulaştıracak ve mantıklı kılacak kadar bir gelir kaynağı elde edemezsek, mecburen Evrim Ağacı'nı bırakıp, kendi mesleklerimize döneceğiz. Ama bunu istemiyoruz ve bu nedenle didiniyoruz.

Küçük Dünya Ağ Modeli

Bu modelde, bir ağdaki düğümler komşu olmadıkları düğümlere bile az sayıda adımda ulaşabilmektedir. Ortalama yol uzunluğunun küçük, kümelenme katsayısının büyük olduğu ağlardır. Watts-Strogatz modeli olarak da bilinen küçük dünya ağları düzenli bir ağ (örneğin yüzük örgü topolojisi) ile rassal ağ arasında kalan bir yapıya sahiptir. Watts tarafından 2003 yılında tanımlanan ve 0 ile 1 arasında değerler alabilen ββ parametresi sıfır durumunda düzenli, bir durumunda rassal ağ oluşturur. Küçük dünya ağları bu ββ aralığının ortalarında yer almaktadır.

ββ parametresinin sıfır ve bir değerlerine göre ortalama yol uzunluğu l(β)l(β) ve kümelenme katsayısı C(β)C(β) aşağıdaki gibidir:

}\space,\space l(1) = \frac{\ln N}{\ln()} \\
C(0)=\frac{3}{4}\space,\space C(1) =\frac{}{4}">l(0)=N2<k> , l(1)=ln⁡Nln⁡(<k>)C(0)=34 , C(1)=<k>4l(0) = \frac{N}{2<k>}\space,\space l(1) = \frac{\ln N}{\ln(<k>)} \\
C(0)=\frac{3}{4}\space,\space C(1) =\frac{<k>}{4}

Derece dağılımı da ββ'ya ve kümelenme katsayısına bağlı olarak da formülize edilebilir ve β=1β=1 durumunda Poisson dağılımını verir.

Ölçekten Bağımsız Ağ Modeli

Doğal ve yapay tüm sistemlere rassal ve küçük dünya ağ modellerinden daha fazla uyan, ölçekten bağımsız ağ modeli adı altında bir model vardır. Derece dağılımları kuvvet yasası formundadır. Şöyle ki, bir düğümün k adet bağlantısı olma olasılığı şöyle belirlenir:

P(k)∼k−γP(k) \sim k^{-\gamma}

Tüm Reklamları Kapat

Burada γ\gamma derece üstelidir. Bu tip ağlarda bir düğümün çok fazla bağlantısının olma olasılığı rassal ağlardan daha yüksektir. Bu da merkez düğümlerin ağın özelliklerinden biri olduğunu göstermektedir.

Ağın büyümeye müsait ve öncelikli bağlantı (İng: "preferential attachment") içeren yapıları ölçekten bağımsız ağları oluşturan iki temel bileşendir. Büyüme, ağdaki düğüm sayısının zamanla artması demektir. Öncelikli bağlantı ise ağa eklenecek yeni bağlantıların, bağlantı sayısı fazla olan düğümler ile olmasının daha yüksek olasılıkta olduğuna işaret etmektedir. Matematiksel olarak bağlanma olasılığı şu şekildedir:

P(ki)=ki∑i=1NkiP(k_i) = \frac{k_i}{\sum\limits_{i=1}^Nk_i}

Tüm Reklamları Kapat

Bu model Barabasi ve Albert tarafından 1998 yılında geliştirilmiştir. Modeldeki ortalama yol uzunluğu olan

<l>=ln⁡Nln⁡(ln⁡N)<l> = \frac{\ln N} {\ln(\ln N)}

paydadaki çift logaritmik düzeltme ile hesaplanabilir ve düğüm sayısı ile logaritmik şekilde artmaktadır. Bu modelin ortalama yol uzunluğu rassal ağlara göre küçüktür. Ölçekten bağımsız ağ heterojen, rassal ağlar homojen topolojide sayılabileceğinden ötürü ölçekten bağımsız ağ yapısı düğümleri birbirine daha fazla yaklaştırmaktadır. Kümelenme katsayısı da rassal ağlara göre daha büyüktür. Bu katsayı bir kuvvet yasası izleyerek, düğüm sayısının artmasıyla azalmaktadır.

Ölçekten bağımsız ağların derece dağılımı hiyerarşik şekilde olduğu için rastgele bir düğümü hedef alan ataklara karşı rassal ağlardan daha savunmasızdır. Merkez düğüm devreden çıktığı zaman ağın bütünlüğü bozulacaktır. Rassal ağlarda ise bağlantılar genellikle homojen bir dağılım gösterdiği için düğüm eksilmelerine daha dayanıklıdır. Diğer düğümler aralarındaki bağlantıları koruyabilir.

Tüm Reklamları Kapat

Buraya kadar değinilen üç temel ağ modeli ile ilgili derece dağılımı, kümelenme katsayısı ve ortalama yol uzunluğunun özeti aşağıdaki çizelgede verilmiştir.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Ağ Bilimi Yazı Dizisi

Bu yazı, Ağ Bilimi yazı dizisinin 3. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Ağ Bilimi Nedir? Bir "Ağ" Nasıl Tanımlanır? Ağ Türleri Nelerdir?" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
24
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 3
  • Bilim Budur! 1
  • Korkutucu! 1
  • Tebrikler! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
Kaynaklar ve İleri Okuma
  • S. Tüzüntürk. (2012). Ağ Bilimi. ISBN: 9786054485697. Yayınevi: Dora Yayınları.
  • M. Newman. (2010). Networks. ISBN: 9780191500701. Yayınevi: OUP Oxford.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 11/10/2024 04:52:24 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/12951

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Teşhis
Deizm
Coğrafya
Gazetecilik
Canlı Cansız
Doğal
Ağız Sağlığı
Çalışma
Sinir Hücresi
Doktor
Venüs
Temel
Kurbağa
Kedi
Video
Jinekoloji
Genom
Santigrat Derece
Tekillik
Mantık Hatası
Sinir Sistemi
Asteroid
Hayatta Kalma
Bakteri
İnsan Türü
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
E. Haliki, et al. Ağ Modelleri Nelerdir? Ağ Biliminde Nasıl Kullanılırlar?. (8 Ağustos 2023). Alındığı Tarih: 11 Ekim 2024. Alındığı Yer: https://evrimagaci.org/s/12951
Haliki, E., Kayalı, Ö. (2023, August 08). Ağ Modelleri Nelerdir? Ağ Biliminde Nasıl Kullanılırlar?. Evrim Ağacı. Retrieved October 11, 2024. from https://evrimagaci.org/s/12951
E. Haliki, et al. “Ağ Modelleri Nelerdir? Ağ Biliminde Nasıl Kullanılırlar?.” Edited by Ögetay Kayalı. Evrim Ağacı, 08 Aug. 2023, https://evrimagaci.org/s/12951.
Haliki, Emir. Kayalı, Ögetay. “Ağ Modelleri Nelerdir? Ağ Biliminde Nasıl Kullanılırlar?.” Edited by Ögetay Kayalı. Evrim Ağacı, August 08, 2023. https://evrimagaci.org/s/12951.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close