Taksonomi - 3: Bakteriler

Yazdır Taksonomi - 3: Bakteriler

Merhaba arkadaşlar,

 

Bildiğiniz üzere yazı dizimizin ilk yazısında Sınıflandırma Bilimi (Taksonomi) ile ilgili ayrıntılı bilgiler verdik; ikinci yazıda ise insan üzerinden çok ayrıntılı bir analiz yaparak Taksonomi'yle ilgili temel olarak bilinmesi gereken kavramların tümünü açıkladık. Ne yazık ki Taksonomi sonsuz bir bilim dalı, çünkü canlı sayısı kadar bilgi var ortada ve hepsini bilmek mümkün değil. Bizse size olabildiğince fazla bilgi verebilmeyi hedefliyoruz. İlk yazımızda da açıkladığımız gibi, bu yazıdan itibaren genelden özele doğru canlı gruplarını tanıtacağız. Bunun için en dış çemberden, Alan'dan başlayacağız.

 

Alan tabirinin İngilizce karşılığın "Domain"dir. Bazı diğer kaynaklar "superregnum", "superkingdom" veya "empire" kelimelerini de kullanır; ancak biz geleneksel olan "domain" tabirini tercih edeceğiz. Alan, çok genel anlamıyla, en geniş taksonomi birimidir ve en çok canlıyı bu seviye kapsar. Elbette bazı daha üst seviyeler tanımlanabilir; ancak bunlar kullanışsızlıklarından ötürü pek tercih edilmezler. Alan, hepimizin pek iyi bildiği Krallıkları (Kingdom) ve Krallık ile Alan arasındaki geçiş birimlerini kapsayan taksonomi birimidir.

 

Günümüzdeki modern sınıflandırma sisteminde kullanılan 3 temel Alan vardır: Bakteriler (veya Öbakteriler), Arkeler ve Ökaryotlar (Ökarya). Yukarıda bahsettiğimiz daha genel sınıflandırma birimlerinden birine örnek verecek olursak: Bakteriler ve Arkeler'in toplamına Prokarya (prokaryotlar) denmektedir; ve Alan üstü sınıflandırma birimlerinden bizim için en önemli olacak olan budur. Çünkü Bakteriler ve Arkeler, temel olarak pek çok açıdan benzerdirler; ancak öyle ciddi farkları vardır ki, aynı Alan gibi düşünmek çılgınlık olurdu.

 

Bu noktada aklınızda hep bulundurmanız gereken kilit nokta şudur: Karmaşık yapıdaki çok hücrelilerin tamamı ve çok daha fazlası (daha sonra değineceğiz) ökaryotiktir ve dolayısıyla Ökarya Alanı'nda bulunurlar. Bakteriler ve Arkeler (eski isimleriyle ve çok da doğru olmayan bir biçimde Arkebakteriler) ise prokaryotiktir ve Prokarya Alanı'nda yer alırlar. Ökarya'dan bir örnek olarak kendinizi düşünebilirsiniz. Böylece kıyaslamaları anlamanız daha kolay olacaktır.

 

Prokaryotların temel özellikleri şöyledir:

 

  • Hücre içi iskelet (cytoskeleton) bulunmaz. Bu sebeple mitoz ile bölünemezler. Prokarya'nın bölünme biçimine amitoz bölünme (binary fission) denir. Bu işlem, mitoz ve mayoza göre son derece basittir: Temel olarak önce DNA eşlenir, sonra yaklaşık olarak hem sitoplazma, hem de genetik materyal iki yavru hücreye sırasıyla ve hemen hemen aynı anda paylaşılır. Mitozdaki fazların hiçbiri görülmez.     
    Amitoz, Mitoz ve Mayoz Bölünmeler
  • Prokaryotların genetik materyalinin içeriği olmasa bile yapısı, ökaryotkarınkinden oldukça farklıdır. Ökaryotlarda meşhur çift sarmal yapılı DNA bulunurken, prokaryotlarda plazmid DNA denen halkasal DNA yapısı görülür. Bu yapı da heliks şeklindedir, ancak doğrusal değil, halka görünümündedir.
  • Prokaryotlarda zarla sarılı hiçbir organel yoktur. Yani ökaryotlarda bulunan mitokondri, Golgi cisimciği ve benzeri organeller bulunmaz. Bunun yerine çoğu tepkime sitoplazma (hücrenin içerisindeki sıvı) içerisinde gerçekleşir ve ürünleri bu sıvı içerisinde kalır, kullanılır. Plazmid DNA da bu sıvının içerisinde, genellikle hücrenin orta bölgesinde bulunur ancak ökaryotlardaki olduğunun aksine, prokaryotlarda DNA çekirdek zarı denen zar ile sarılıp korunmaz. DNA, sitoplazma içinde özgürdür (ve bir o kadar da, göreceli olarak korunmasızdır).

 

Genetik araştırmalar, Bakteriler, Arkeler ve Ökaryotlar arasındaki Evrimsel bağları göstermektedir. Üçü, ilkel canlıdan farklılaşarak evrimleşmişlerdir ve bu Alanlar'da bulunan her bir canlı, Dünya üzerindeki diğer tüm canlılarla belli miktarda geni ortak olarak paylaşırlar. Bu da tüm canlıların tek bir ortak atadan evrimleştiğini bize göstermektedir. Bu üç Alan arasındaki genetik bağı, Miami Üniversitesi'nin internet sayfasından aldığımız şu görsel gayet güzel anlatacaktır:

 

Bakteriler, Arkeler ve Ökarya Arasındaki Bağ ve Ortak Ata

 

Görselde de görebileceğiniz gibi, bu üç Alan tek bir ortak atadan evrimleşmişlerdir. Evrim Ağacı'nı incelersek, Bakteriler ortak atanın belirli bir grubundan ayrılan ilk Alan (veya canlı grubu) olmuştur. Daha sonra, geriye kalan canlılar da kendi evrimsel yollarına devam etmişler ve bir noktada tekrar ikiye ayrılmışlardır. Bunlardan bir kol, Bakteriler'e oldukça benzemesine rağmen Ökaryotlara daha yakın oldukları genetik araştırmalarca ispatlanmış olan Arkeler, diğeri ise günümüz "gelişmiş" (bu bir metafordur ve hiçbir canlı diğerinden üstün değildir) canlılarına giden kolu meydana getimiştir. Bunları bağlayan ve bilim dünyasında "koaservatlar" olarak bilinen ilkel canlı formları ve ilk hücreler de Evrensel Ortak Ata (Universal Common Ancestor) dediğimiz canlılardır (daha doğrusu "cansız" - "canlı" geçişidir). Bu ortak atanın 3.8 milyar yıl önce yaşadığı ve 2-3 milyar yıl öncesine kadar varlığını sürdürdüğü bilinmektedir. Tabii günümüzdeki tüm canlıların, o canlı popülasyonlarının torunları olduğunu unutmamak gerekir.

 

Buradan da görülebileceği gibi, özellikle bakteriler, çok uzun bir zamandır Dünya'da var olan bir canlı grubudur. Bakteriler, Arkeler ve Ökaryotların hiçbiri "ilkel" değildir ve her biri milyarlarca (bin milyonlarca) yıllık doğal seçilim, mutasyon, genetik sürüklenme, vb. mekanizmaların ürünüdür.

 

Şimdi, bakterileri incelemeye devam edelim. Bakterilerde temel olarak 3 ana şekil/tip görmekteyiz: küresel bakteriler (Latince: coccus, Türkçe: kok), çubuk bakteriler (Latince: bacillus, Türkçe: basil) ve heliks bakteriler. İsimlerinden de anlaşılabileceği gibi kok bakterileri küresel bir şekle sahiptir, basiller çubuk şeklindedir ve heliks bakteriler tıpkı bir vida gibi heliks şeklindedir. Basiller ve heliksler tek tek bulunabilecekleri gibi uç uca eklenerek uzun zincirler de oluşturabilirler.

 

Peki bakterilerin başarısının kaynağı nedir?

 

Aslında bu başarıyı bakteriler, arkelerle birlikte paylaşırlar. Dediğimiz gibi temel olarak bu iki alan birbirine oldukça benzerler ve pek çok özelliği paylaşırlar. Ancak arkelerin, ökaryotlara daha yakın oldukları unutulmamalıdır.

 

Prokaryotların sayısı, sadece okyanuslarda 30 oktilyon (30 çarpı 10 üzeri 27, yani 30'un yanına 27 tane daha sıfır) tane civarlarında olduğu hesaplanmaktadır. Bu, görünür Evren'deki yıldızların sayısından 100 milyon kat daha fazladır. Bu başarılarının arkasında bir sebep aramak gerekir.

 

Bunun birinci sebebi, prokaryotların yüksek bölünme hızı olarak verilebilir. Amitoz Bölünme sayesinde çok seri olarak bölünebilirler ve o kadar çok yavru hücre oluştururlar ki, yok olmaları imkansız bir hal almıştır. Üstelik bu bölünmeler sonucunda dağınık halde de yaşamazlar. Çoğu zaman biyofilm dediğimiz, kayaların ve benzeri sert yüzeylerin üzerinde bulunan canlı tabakalarını oluştururlar. Canlılık tarihine ait en eski fosiller, milyarlarca yıl önce bu biyofilmler ve kalsiyum karbonat sayesinde oluşan stromatolitler'dir. Bu yapıların fosilleri şöyle görülebilir:

 

Stromatolit (Fosil)

 

Günümüzde halen bu yapılar bakterilerce üretilmektedir. Bir örneği aşağıda görülebilir:

 

Stromatolit (Canlı)

 

Burada yapmak istediğimiz bir vurgu şudur: Her şey göründüğü gibi olmayabilir. Dışarıdan size "kaya" gibi gözüken bir şey, gerçekte milyarlarca canlının bir arada yaşadığı devasa bir koloni olabilir. Bu noktada, mercan kayalıklarının aslında "kaya" olmadığını, bir hayvan filumu olan süngerlerden oluştuğunu hatırlatmak gerekir.

 

Bakterilerin tamamının hücre duvarında peptidoglikan (peptidoglycan) denen bir yapı bulunur. Bu yapıyı Gram boyası denen bir boya ile gözlemleyebiliriz. Bu boya ile yapılan deneyler sonucunda, kimi bakterilerin hücre duvarının çok kalın bir peptidoglikan yapısına sahip olduğu, kimi bakterilerde ise bu yapının oldukça ince olduğu görülmüştür. Bakteriler, bu yapılarına göre Gram-pozitif (kalın tabakalı) ve Gram-negatif (ince tabakalı) olarak iki gruba ayrılabilirler. Bakteriler, bu çeşitlilik sayesinde çok farklı ortamlara dayanabilmektedirler.

 

Ayrıca bakterilerin bir diğer önemli özelliği, hareket kabiliyetlerinin oldukça farklı olmasıdır. Örneğin bazı fotosentez yapıcı bakteriler (Türkçe: Siyanobakteri - İngilizce: Cyanobacteria) gerektiği zaman suyun yüzeyine yaklaşmak için hücre içerisindeki gaz keseciklerini şişirir ve suda yavaşça yükselirler. Aşağı inmeleri gerektiği zaman ise bu keseciği indirerek alçalabilirler. Bakterilerin büyük bir kısmı ise flagellum (çoğul: flagella) denen kamçılar aracılığıyla hareket ederler. Flagella, uzun yıllar Evrim Karşıtları'nın "İndirgenemez Karmaşıklık Safsatası"nın aleti olmakla birlikte, günümüzde nasıl evrimleştikleri gayet net bir biçimde açıklanabilmekte ve karmaşık yapıları anlaşılabilmektedir. Günümüzde, kamçıların sadece bakterilerde bulunmadığı bilinmektedir. Richard Dawkins'in Ataların Hikayesi isimli kitabında izah ettiği gibi, Mixotricha paradoxa isimli bir tek hücreli hayvanın da kamçıları bulunur. Ancak bu kamçılar, sıfırdan evrimleştirilmek yerine, muhteşem bir simbiyotik ilişki örneğidir. Hayvan, bazı spiroketleri (heliks bakteriler) yapısının dış kısmında tutarak onları sil (küçük hareket sağlayıcı kılcıklar) ve flagellum olarak kullanmaktadır. Bakteriler de bu sayede kolayca hayvan sayesinde beslenmektedirler.

 

Mixotricha paradoxa (Bir bakteri değil, mikrobik bir tek hücreli hayvan)

 

Bir diğer önemli prokaryotik özellik, bu canlılarda aseksüel (cinsel olmayan) üreme olması (bahsettiğimiz gibi amitoz bölünme) ancak çeşitli gen aktarım ve değişim yöntemleriyle farklı bakteri ve arke bireyleri arasında transfer yapılabilmesidir. Bakteriler, çok hızlı bölünebilirler: Kimisi 10 dakikada bir bölünürlen, kimi günlerce bölünmeden kalabilir. Yani bölünme hızları oldukça çeşitlidir. Bu sayede de oldukça başarılı bir şekilde hayatta tutunabilirler.

 

Prokaryotların bir diğer çok önemli özelliği, iletişimdir. Bakteriler ve arkeler, çeşitli kimyasallar salgılayarak birbirleriyle iletişim kurabilir ve kendi türlerinden olan bireyleri ayırt edip tanıyabilirler. Vibrio gibi bazı bakteriler, özel bir kimyasal tepkime sayesinde ışık saçarlar, buna bioluminesans (bioluminescence) denir. Bu bakteriler, bu ışık sayesinde balıkları üzerine çekerler ve üzerine konakladıkları yemleri yemelerini sağlarlar. Böylece balığın midesine girerler ve kendileri için korunaklı ve bol besinli bu yerde ürerler. Olduğu gibi, bir atık olarak dışarı atılırlar ve döngüyü bu şekilde sürdürürler. Vibrio bakterileri o kadar geniş koloniler halinde yaşarlar ki, yaydıkları ışık uzaydan gece çekilen fotoğraflarda bile görülebilir.

 

Vibrio

 

Bakterilerin belki de en büyük başarısı, çok geniş bir metabolik tepkime çeşitliliğine sahip olmasıdır. Solunumları ve besin üretimlerini çok farklı şekillerde karşılayabilirler. Burada, canlıların solunum sistemleriyle ilgili bazı genel kavramlar yapmakta fayda görüyoruz:

 

Zorunlu Anaerob: Bu canlılar için oksijenin var olduğu ortamlarda yaşamak mümkün değildir. Çünkü oksijen, bu canlılar için bir zehir değeri taşır. Çok eski zamanlarda, atmosferde yeni yeni oksijen oluşurken (fotosentetik bakteriler sayesinde), o dönemde yaşayan canlıların çoğu için oksijen zehir etkisi yapmıştır ve pek çok canlının ölmesine sebep olmuştur. Ancak sonra, oksijenin baskın bir gaz haline gelmesiyle, canlılar adapte olmak ve evrim geçirmek zorunda kalmışlardır. Ancak günümüzde halen oksijen olmadan yaşamak zorunda olan bakteriler bulunmaktadır. Çok hücrelilerde ise bu mümkün değildir.

 

Heliobacteria

 

Zorunlu Aerob: Bu canlılar için oksijenin varlığı bir zorunluluktur. Oksijen olmadan yaşamlarına devam edemezler. Günümüzdeki canlıların çoğu, özellikle de çok hücrelilerin tümü zorunlu aerobdurlar ve mutlaka oksijen olan yerlerde yaşamak zorundadırlar.

 

Acetobacter aceti

 

Fakültatif Anaerob: Bu canlılar, oksijeni varlığında oksijenli solunum yapan, yokluğunda ise oksijensiz solunum yaparak yaşayabilen canlılara denmektedir. Kısaca, zorunlu anaeroblarla zorunlu aeroblar arasındaki bir "geçiş" teşkil ederler. Pek çok hayvan, oksijen olmadığı ya da az olduğu zamanlarda enerji üretmek için oksijensiz solunum yapabilir; ancak bunlar, oksijensiz solunum yaparak hayatlarını sürdüremezler. Bu yüzden bu canlılar fakültatif anaerob sayılamazlar.

 

Shigella flexneri

 

Aerotolerant Anaerob: Bu canlılar, oksijeni solunum için kullanamazlar; ancak oksijenin varlığı bu canlılar için bir sorun teşkil etmez, adlarından da anlaşılabileceği gibi oksijene karşı "tolerans" gösterebilirler. Bu da, zorunlu anaeroblarla fakültatif anaeroblar arasında bir "geçiş" teşkil eder.

 

Streptococcus pneumoniae

 

Kısacası, solunum konusunda oldukça yumuşak bir geçişe sahibizdir: Zorunlu anaeroblar, aerotolerant anaeroblar, fakültatif anaeroblar ve zorunlu aeroblar.

 

Üstelik sadece solunum da değil, bakteriler yiyecek bulma konusunda da uzmandırlar ve çok geniş yöntemlere sahiptirler. Şimdi bunlara göz atalım. Unutmayınız ki, buradaki kavramlar sadece bakteriler için geçerli değildir ve karşısındaki açıklamayı yapabilen her canlıya, aşağıdaki kavramlarla hitap edilebilir.

 

Foto-ototroflar: Bu canlıların en önemli özelliği fotosentez yapmalarıdır. Güneşten aldıkları enerji (fotonlar) sayesinde ve havadaki serbest Karbondioksit gazındaki Karbon'u kullanarak besinlerini üretirler ve dışarıdan besin almaya ihtiyaç duymazlar. Ayrıca bu işlem sırasında diğer canlılar için son derece önemli olan Oksijen gazını açığa çıkarırlar. Fotoototrof canlıların en temel örnekleri; yeşil bitkiler, siyanobakteriler ve bazı diğer bakterilerdir.

 

Siyanobakteri

 

Foto-heterotroflar: Bu canlılar da güneş enerjisini kullanırlar; ancak besin üretiminde kullanacakları Karbon'u dışarıdan "avlanarak" almak zorundadırlar. Buradaki avlanma, bildiğimiz avlanmadan farklı olarak, etraftaki Karbon içerikli organik bileşiklerin hücre içerisine alınması şeklinde yapılmaktadır.

 

Kemo-litotroflar (Kemo-ototroflar): Bu canlılar enerjilerini inorganik maddeleri okside ederek elde ederler ve bu enerjiyle Karbondioksit'i bağlar ve besinlerini üretirler.

 

Kemo-heterotroflar: Bu canlılar hem enerjilerini, hem de besinlerini dışarıdan almak zorundadırlar. Tüm hayvanlar ve mantarlar bu gruba girerken, çoğu bakteri ve arke de bu gruptadır.

 

Bakterileri bu şekilde genel gruplara bölmemiz mümkündür. Ancak daha fazla kafa karışıklığına sebep olmadan burayı geçmek istiyoruz.

 

Bakterilerilerle ilgili genetik çalışmalar, çok önemli bir olguyu ortaya koymuştur. Normalde genler, ebeveynlerden yavrulara, yani dikey gen aktarımı şeklinde gerçekleşirler, eğer Evrim Ağacı'nı gözünüzün önüne getirirseniz. Ancak ilginç bir şekilde bakterilerdeki gen transferi ile üreme sebebiyle, farklı bakteri kolları arasında gen transferi gözlenmiştir. Buna yatay gen aktarımı (lateral gene transfer) denir. Bunun çok ilginç bir örneği Thermotoga maritima isimli bir bakteride gözlenmiştir. Bu bakteri, kendine benzer bakterilerle yakın akraba olmak yerine, genetik olarak incelendiğinde, aynı ortamda birlikte yaşadığı arkelerle daha yakın akraba olduğu çıkmıştır. Bunun sebebi, genlerin sadece ana bakteriden yavru bakteriye aktarılmasının yanısıra, bir bakteriden bir diğer gen transferi ile üreyebilen bakteri türüne ve hatta arkelere aktarılabilmesidir. Kısaca, birbirinden tamamen farklı olan iki Alan, bu sayede birbirine karışabilmektedir. Ancak bazı gelişmiş tekniklerle bu aktarımlar tespit edilebilmekte ve uzlaşım ağacı denen ağaçlar çizilebilmektedir.

 

İlginç bir şekilde, Dünya üzerinde o kadar çok türde prokaryotik canlı vardır ki, bunların sadece çok çok küçük bir kısmı bilim insanları incelenebilmiştir. Ancak bu konudaki çalışmalar da hızlanarak devam etmektedir.

 

Umarız açıklayıcı olabilmiştir.

 

Saygılarımızla.

 

ÇMB (Evrim Ağacı)

 

Life: The Science of Biology (Sadava, et. al), 2011


6 Yorum