Abiyogenez - 4: İlk DNA Nasıl Oluştu? - Retrovirüsler, 'Önce-RNA Hipotezi' ve 'RNA Dünyası Kuramı'

Yazdır Abiyogenez - 4: İlk DNA Nasıl Oluştu? - Retrovirüsler,

Bu yazımıza kadar sizlere canlılık ile cansızlık arasında herhangi bir fark olmadığından, canlılığı ayırt etmekte kullandığımız yöntemlerden olan "Hayat Molekülleri"nin nasıl oluşmuş olabileceğinden, yapılarından ve işlevlerinden bahsettik. Bu yazımızda ise, artık yavaş yavaş bu moleküllerin canlılığın evrimine nasıl katkı sağladığına değinerek ilerlemek istiyoruz. Çünkü önceki yazılarımız ağırlıklı olarak kafalardaki yanlış anlaşılma ve betimlemeleri silmeyi hedeflemekteydi. Bu yazımızdan itibaren, canlılığın cansızlıktan evrimine daha detaylı bir bakış atacağız. 


Başlamadan uyarmakta fayda var: Elbette burada anlattıklarımız tüm detayları kesin olarak bilinen olgular değildir. Çünkü kimse 4.5 milyar yıl önce Dünya'nın başlangıcında bulunmadı ve muhtemelen asla da bulunamayacak. Dolayısıyla orada tam olarak ne olduğunu bilemiyoruz. Fakat günümüzdeki fizik ve kimya yasalarının o zamanda da geçerli olduğunu bildiğimizden, günümüzdeki unsurlardan, olaylardan ve olgulardan yola çıkarak, geçmişte neler olduğunu aydınlatabiliyoruz. Bugünkü bilgilerimiz dahilinde bile canlılığa ait tüm unsurların doğal süreçlerle var olabileceklerini artık biliyoruz. Bunların teknik detaylarıyla ilgili bazı soru işaretleri elbette bulunuyor ve tartışılıyor. Tüm bilim insanları tek bir fikre varmış da değiller. Ancak elde bulunan ve giderek artan gerçekler, birçok öngörümüzün doğru olduğunu ve canlılığın başlangıcının tamamen doğal süreçlerle meydana geldiğini gösterir nitelikte. Doğayla ilgili bilgilerimiz arttıkça da bu öngörü daha da doğrulanacak gibi gözüküyor. En azından şimdiye kadar bilimin hiçbir dalında doğaüstü açıklamalara ihtiyaç duyulmamış olması ve her sorgulanan unsurun tamamen doğal, bilinçsiz ve yönlendirilmemiş şekilde var olabileceğini keşfi, bize bu düşüncemizde haklı olduğumuz fikrini veriyor. Henüz süreçleri çözülememiş birçok farklı mekanizma olsa da, çözebildiklerimizin verdiği kritik bilgiler, daha genel yargılarımızın da doğru olmasının çok muhtemel olduğunu gösteriyor. En nihayetinde gerçekler, yine bilimsel araştırmalarla keşfedilecektir. Bekleyip sonuçları göreceğiz.

 

Her şeyden önce söylemek gerekiyor ki hangi molekülün nasıl ve hangi sırada oluştuğu konusu, uzun süre bilim insanlarının aklını meşgul etmiş ve pek çok hipotezin ortaya atılmasına, onlarca deneyin düzenlenmesine, konu hakkında pek çok tez yazılmasına sebep olmuştur. Bir grup bilim insanı öncelikle metabolizmayı, daha doğrusu organizasyon içerisinde sürdürülecek aktivitelerin toplamını oluşturacak olan karbonhidrat, yağ ve proteinlerin önce; genetik materyalin ise bunların oluşumuna bağlı olarak sonradan oluşması gerektiğini ileri sürmüşlerdir. Buna bilim dünyasında Önce-Metabolizma Hipotezi denmektedir. Bir diğer grup bilim insanı ise, öncelikle genetik materyalin oluşması gerektiğini, sonrasında ise bu oluşuma bağlı olarak organizasyon içi aktivitenin oluşması gerektiğini ileri sürmüşlerdir. Ancak bu hipotez, uzun bir süre çıkmaza girmiş ve dolayısıyla Önce-Metabolizma Hipotezi hep ağırlık kazanmıştır. İkinci hipotezin girdiği çıkmaz şudur: Önce DNA mı oluştu, yoksa RNA mı? Önce DNA oluştuysa bu karmaşık yapı bir seferde nasıl oluştu? RNA, DNA'dan daha basit yapılı olmasına rağmen, neden DNA'dan sonra oluştu? RNA önce oluştuysa, nasıl oldu da RNA'dan DNA oluşabildi? Bu sorular dönüp dururken Byioloji'de yazı içerisinde tekrar döneceğimiz Merkezi Dogma denen bir ilkenin geçerliliği olduğu düşünülmekteydi. Buna bağlı olarak bir grup bilim insanı önce DNA'nın oluşması gerektiğini iddia ederek Önce-DNA Hipotezi'ni ileri sürdüler. Bir diğer grup bilim insanı ise buna karşı gelerek, öncelikle RNA'nın var olması gerektiğini, ondan sonra DNA'nın var olabileceğini iddia ederek merkezi dogma ilkesine karşı geldiler ve Önce-RNA Hipotezi'ni ileri sürdüler. Günümüzdeki yeni bulguların ışığında bu üç taraflı tartışma (Önce-Metabolizma, Önce-DNA, Önce-RNA) belli bir düzeyde dinerek, ortak bir noktada buluşulmaya başlandı. Biz, bu ortak nokta üzerinden giderek başlığımızda yer alan sorulara cevaplar vereceğiz.

 

Öncelikle eldeki soruna bir daha bakalım: Canlılığı oluşturacak materyaller, belli bir sırayla ya da eş zamanlı olarak oluşmuş olmalıdır. Eğer bir sırayla oluştularsa, hangisi öncelikli olarak oluştu? Eğer eş zamanlı olarak oluştularsa, nasıl oldu da zamanlama bu kadar doğru ve isabetli bir şekilde tutturuldu? Bu sorular, bilim insanlarının aklını çokça kurcalamıştır. Ancak artık ne tamamen sırayla, ne de tamamen eş zamanlı bir oluşum üzerinde durulmaktadır. İkisi zamanlamanın da oluşuma belirli oranlarda katkı sağladığı düşünülmektedir.

 

Metabolizmanın mı önce, DNA veya RNA'nın, yani kalıtım ve düzenleyici materyallerin mi önce oluştuğu sorusu halen tartışılmakta olan bir sorudur. İşte bu noktada, muhtemelen bir eş zamanlılık durumu ile karşı karşıyayız. Daha sonra değineceğimiz gibi canlılık, cansızlık ortamındaki karmakarışık bir ortamda evrimleşmiştir. Dolayısıyla bu ortamda metabolik malzeme ile kalıtımsal malzemenin bir arada bulunuyor olma ihtimali son derece yüksektir. Bu materyalleri bir arada bulundurabilen bireylerin, tek tek bulunduranlara göre avantajlı olması beklenecektir. Bu konuya, ilerideki yazılarımızda daha da ayrıntılı olarak gireceğiz; ancak şimdilik metabolizma ile kalıtım materyalinin eş zamanlı veya en azından birbirine çok yakın zamanlarda oluştuğunu düşünebilirsiniz.

 

Peki, metabolizmanın oluşumunda bir sorun yok; zira karbonhidratlar ve yağlar, kendiliğinden, çevresel etmenlerin etkisi altında kolayca oluşabilen ve oluşabildikleri gözlenebilen kimyasallardır. Nükleotitler de benzer şekilde kendiliğinden, uzun deneme-yanılma süreçleri sonucunda oluşabilir. Fakat nükleotitlerden oluşan büyük yapılardan DNA mı, yoksa RNA mı önce oluşmuştur? RNA tarafından üretilen proteinler, nükleotitlerin oluşturduğu DNA ve RNA'dan bağımsız olarak oluşmuşlar mıdır? Yoksa öncelikle kalıtım materyalleri oluşmuş, sonrasında ilkin proteinler mi üretilmiştir? İşte bu sorulara cevap verilmesi gerekmektedir.

 

Oluşum sırasını anlayabilmek için öncelikle yukarıda değindiğimiz bir diğer konuya tekrar dönelim: Bir grup bilim adamı, DNA olmaksızın RNA'nın sentezlenemeyeceğini, dolayısıyla proteinlerin üretilemeyeceğini, dolayısıyla canlının varlığını sürdüremeyeceğini ileri sürmüştür. Bu, bilim dünyasının Biyoloji'nin Merkezi Dogması olarak isimlendirdiği bir "ilke"dir. Bu ilkeye göre DNA, RNA'yı sentezler; RNA da proteinleri sentezler. Hiçbir zaman proteinlerden RNA, RNA'dan da DNA üretilemez. Dolayısıyla, bu ilkeye göre canlılığın başlangıcında ilk önce oluşması gereken, DNA'dır. Buna, daha önce de belirttiğimiz gibi, "Önce-DNA Hipotezi" denmiş ve uzunca bir süre DNA'nın nasıl oluşabileceği üzerine araştırmalar yürütülmüştür. Bu araştırmaların temelinde öncelikle DNA'nın, sonrasında RNA ve proteinlerin üretildiğini fikri yatmaktadır. Fakat Önce-DNA Hipotezi birçok soru işaretini açıkta bırakıp, birçok yeni soru işareti yarattığı için hiçbir zaman güçlü bir açıklama haline gelememiştir. 

 

Ancak daha sonra, retrovirüs dediğimiz ve ana genetik materyali canlılar gibi DNA değil de RNA olan virüslerin yapısı anlaşıldığında, "Önce-DNA Hipotezi" çok derin yaralar alarak iyice terk edilmeye başlanmışıtır. Retrovirüslerde keşfedilen yeni bir mekanizma sayesinde günümüzde artık Biyoloji'de "merkezi dogma" geçerliliğini kısmen yitirmiştir.

 

Önce-DNA Hipotezi'ne göre, DNA tam olarak açıklanamayan ancak temel kimyasal tepkimeler dahilinde, doğal fiziksel itki-tepki kuvvetlerine göre, bu şekilde sarmal bir halde üretilmiş ve sonrasında, yine yapısı gereği RNA sentezleyerek işlevini sürdürmüştür. Ancak bu hipotezin, pek çok açığı bulunmaktadır. Bunların en önemlisi de, DNA'nın bir katalizör yani kimyasal tepkimelerin aktivasyon enerjisinin düşürücü (tepkimeyi hızlandırıcı) etkiye sahip kimyasal özelliği bulunmamasıdır. Bu da, bu kadar kompleks ve büyük moleküllerin oluşabilme ihtimalini çok düşürmektedir. Çünkü, katalizör olan bir ortamda birkaç saniyede gerçekleşecek bir tepkime, katalizör olmadığında günler, haftalar, yıllar ve hatta yüzlerce, binlerce yıl alabilmektedir. Önce-DNA Hipotezi savunucuları, ilk canlının oluştuğu ortam koşullarını katalize edici bir faktör olarak ileri sürseler ve bu şekilde bu karşı-tezi çürütmeye çalışsalar da, yaptıkları açıklamalar bilimsel açıdan pek de tatmin edici değildir. Dahası, bu açıklamadan çok daha iyi ve az varsayıma dayanan bir diğer açıklama bulunmaktadır. Buna az sonra geleceğiz.

 

Sonradan yapılan yeni bir keşif, zaten neredeyse tüm soru işaretlerini ortadan kaldırmaya yetmiştir: Ribozim (ribozyme) isimli bir RNA parçası ve aynı zamanda da enzim keşfedilmiştir.

 

Ribozim, "ribonükleik asit enzimi"nin kısaltılmışıdır. Ribozim, aslında temel olarak bir RNA molekülüdür. Bu molekülün üçüncül (tetriary) yapısı (daha fazla bilgi için proteinlerin yapısal özelliklerine bakmanızı tavsiye ederiz) sayesinde, kalıtım materyali haricinde, aynı zamanda bir enzim olarak çalışmakta ve kimyasal tepkimelerin aktivasyon enerjisini düşürebilmektedir. Ribozim kimyasal yapısından ötürü, ortamda kendisini oluşturacak ve yazı dizimizin önceki yazılarında bahsettiğimiz temel Hayat Molekülleri'nden olan nükleotitler bulunduğu sürece, kendi kendisini üretme tepkimesini tetikleyecek bir yapıdadır. Bu tip yapılara (ribozim tek değildir), bilim dünyasında oto-katalizör denmektedir.

 

Dolayısıyla canlılığın başlangıcında, aktivasyon enerjisi düşürülmemiş; ancak çevre etkisi altında normalden daha kolay gerçekleşebilen bir kimyasal tepkime sonucunda, tek bir ribozim bile üretilirse (ki ribozimin yapısı DNA'dan son derece basittir), sonrasında bu ribozimin kendisinin üretimini sağlayan tepkimeyi hızlandıran özelliği sayesinde sınırsız sayıda ribozimin oluşması sadece dakikalar ve günler alacaktır. Dolayısıyla Önce-RNA Hipotezi dahilinde, ilk oluşan molekül bir ribozimdir (bir tip RNA'dır) ve bu enzim doğal süreçlerle milyonlarca yıllık bir deneme-yanılma ve seçilim süreci sonucunda oluşmuştur, sonrasında kendisini üreterek hızla çoğalmıştır. Bu basit RNA, ilkin canlılarda genetik ve düzenleyici materyal rolünü görmeye başlamış, böylece koaservat içerisindeki kimyasal bütün tepkimeleri koordine edecek olan molekül oluşmaya başlamıştır. Sonrasında bu enzim-RNA yapısı, kimyasal evrim süreci içerisinde bildiğimiz RNA'ya daha da benzeyen bir hal almıştır ve buradan da geri-transkripsiyon denen ve "merkezi dogma"nın hatalı olduğunu gösteren tepkime sayesinde (retrovirüsleri hatırlayınız) RNA'dan DNA üretilebilmiştir.

 

Şimdi, bu kavramı daha iyi anlamak amacıyla, Biyoloji'deki merkezi dogma denen yapıyı özetleyecek olursak:

 

1) DNA, kendisini ve RNA'yı üretebilen moleküldür.

2) RNA, DNA'yı üretemez ancak proteinleri sentezleyebilir.

3) Proteinler, ne RNA'yı ne de DNA'yı sentezleyebilir. Sadece bunlar tarafından sentezlenirler.

 

Daha önce de bahsettiğimiz gibi retrovirüslerin keşfi, bu dogmanın ikinci maddesinin ihlal edilebildiğini, dolayısıyla ilkenin geçersiz olduğunu göstermiştir. Retrovirüsler, yapılarında var olan RNA'yı kullanarak DNA sentezlerler. Bunu yapan enzimse ters transkriptaz denen bir enzimdir. Biraz karmaşık olan ve temel Biyoloji bilgisi gerektiren bu olayı kabaca özetlemekte fayda görüyoruz. Bunu anlamak için, günümüzde bu işlemi halen gerçekleştirebilen varlıklar olan ve canlı sayılmayan retrovirüsler (4. sınıf virüsler) ve onlardaki RNA'dan DNA sentezini inceleyebiliriz:

 

1) Özel bir tRNA, RNA üzerinden çiftlenmenin başlaması için gereken öncül molekül olarak RNA'nın "birincil bağlanma bölgesi" denen kısmına bağlanır.

 

2) Sentezlenecek olan tamamlayıcı şeridin ilk parçaları, bu öncül molekülün bağlandığı birincil bağlanma bölgesinin hemen yanında bulunan R ve U5 denen bölgeye bağlanır ve bunların ikizleri, öncül molekülün peşinde üretilir.

 

3) RNAz H denen bir enzim, DNA'yı üretecek olan RNA'nın bu R ve U5 bölgelerini parçalar.

 

4) Bu işlem sonrasında, öncül molekül RNA'nın öteki ucuna geçer ve peşinden kopyalanmış R ve U5 parçalarını da sürükler. Bu parçalardan R isimli kısım, RNA'nın diğer ucundaki R ile bağ kurar.

 

5) Bu işlemden sonra RNA hızla kopyalanır ve tek bir şerit olan RNA'dan, ikincil ve kendisinin ikizi bir şerit elde edilir. Bu, aynı zamanda "eş DNA"nın (üretilecek olan DNA) ilk şeridi olur. Bu sırada RNAz H enzimi, ana RNA'nın büyük bir kısmını parçalar.

 

6) İlk şerit üretildikten sonra, otomatik olarak virüs içerisindeki RNA, ikinci şeridin oluşumunu tetikler.

 

7) İlk baştakine benzer bir sıçrama sonucunda, RNAz tarafından parçalanan RNA'nın yerine, ilk şeridi tamamlayan ikinci şerit üretilir. Böylece tek şeritli RNA'dan, çift sarmal olan DNA üretimi tamamlanır.

 

Bu olay, ilk bakışta karışık ve "moleküllerin kendi kendine yapamayacakları kadar karmaşık bir iş" gibi gözükse de, sorun "canlılık" kavramındaki hatalı tanımımızdan kaynaklanmaktadır. Şu nokta anlaşılırsa, sorun ortadan kalkar: "Canlı", bu yukarıda saydığımız gibi veya daha da karmaşık moleküler tepkimeleri gerçekleştirebilen varlıklar değillerdir. Tam tersine, bu yukarıda saydığımız gibi veya daha karmaşık moleküler tepkimelerin gerçekleştiği atomlar ve moleküller bütününe biz dönüp baktığımızda "canlı" diyoruz. Buradaki ufak farkı yakalayabildiğinizde, aklınızdaki pek çok sorun ortadan kalkacaktır. Daha ayrıntılı bilgi için, "canlılık" ve "cansızlık" kavramıyla ilgili bundan önceki yazılarımıza bakılabilir. Ayrıca aşağıda, ters transkripsiyonun neye benzediği gösterilmektedir:



 

Ancak sonuç olarak, RNA, bu yöntemlerle ve muhtemelen başlangıçta daha basit ve karmaşık olmayan; ancak daha çok hataya meyilli olan yöntemlerle DNA'yı üretebilmektedir. İşte bu da bizi RNA Dünyası Kuramı'na götürür (bu artık bir hipotez olmayacak kadar farklı çeşitte bilimsel gerçeklerle desteklenmektedir). Bu kurama göre, daha önce bahsedildiği gibi, sadece 1 adet ribozim enzimi kimyasal ve fiziksel tepkimeler dahilinde doğal şartlar altında var olmuştur ve Doğal Seçilim sayesinde, bu yapı kendisinin üretimini sağladığı için seçilmiş ve varlığını sürdürmüştür. Bu sayede, kısa sürede Dünya'ya RNA molekülleri hakim olmaya başlamıştır. Hele ki yağ moleküllerinin su içerisinde kendi kendine organizasyon denen bir diğer ilke dahilinde, daha önce açıkladığımız basamaklardan geçerek bir zırh oluşturmaları ve RNA'ların bu zırh içerisine hapsolması, onları daha da avantajlı hale getirmiştir.

 

İşte koaservat dediğimiz ilk "canlı" yapıların genetik materyal kazanmaları da bu şekilde gerçekleşmiştir. Koaservatların oluşum ve gelişimlerine önümüzdeki yazılarda değineceğiz. Ribozim ve bunun sayesinde üretilen RNA molekülüne sahip olan koaservatlar, genetik materyalin düzenleyici rolünden ötürü çok daha avantajlı konuma geçmişlerdir ve herhangi bir genetik materyale sahip olmayanlara karşı üstünlük sağlamışlardır. Genetik materyal, bir hücre (ya da daha basit olarak koaservat) içerisindeki bütün tepkimelerin bilgisini depolayan yapıdır. Dolayısıyla genetik materyalin kazanılması, hücre içerisinde düzenli olarak gerçekleşecek tepkimelerin başlamasından daha önce olmuş olmalıdır. Daha sonra, genetik materyale vee bu sebeple de düzenli bir şekilde yaşamlarını sürdürüp çoğalmayı başarabilen bu koaservatlar gittikçe gelişerek tek hücreli canlıları meydana getirmişler ve bunların 3.8 milyar yıllık evrimleri sonucu da günümüzdeki modern canlılar meydana gelmiştir.

 

Önce-RNA Hipotezi (ya da günümüzdeki adıyla RNA Dünyası Kuramı), pek çok açıdan desteklenmektedir. Örneğin, canlılık Dünya'da, Dünya'nın var olmaya ve soğumaya başladığı 4.5 milyar yıl öncesinden yaklaşık 600-700 milyon yıl önce (bundan 3.8 milyar yıl kadar önce) var olmaya başlamıştır. Bu 600-700 milyon yıllık uzun süreçte, Dünya üzerinde sonsuz sayıda kimyasal tepkime gerçekleşmiştir. Miller-Urey Deneyleri ile ispatlandığı ve 460'tan fazla, farklı üniversitede de günümüzde sınandığı, geliştirildiği ve başarılı bulunduğu üzere, o günlerin şartlarında oluşan sayısız organik molekül, birbirleriyle birleşmiş, ayrılmış, tekrar birleşmiş ve sınırsız sayıda deneme-yanılma yapılmıştır. Sonunda daha kararlı yapıda olan bileşimler varlıklarını korumuşlardır ve cansızlıktan canlılığın oluşumu bu şekilde, minik adımlarla, 600-700 milyon yılda gerçekleşmiştir. Bu süre, bir ribozimin var olabilmesi için fazlasıyla yeterli bir süredir. Zaten bir tanesi var olduktan sonra, sınırsız sayıda ribozim ve dolayısıyla RNA molekülünün olması işten bile değildir. 

 

RNA var olduktan sonra, gerek diğer moleküllerle tepkimeler, gerekse de yine deneme-yanılma ve buna bağlı seçilim sonucu DNA molekülü oluşabilmiştir. Daha önceki yazımızda da ele aldığımız gibi, günümüzdeki laboratuvar deneylerinde RNA sıfırdan, sadece doğal tepkimelerle üretilebilmiştir. RNA'nın üretilebilmesi, ters transkripsiyonun bilinmesiyle birleşince (ki bu tepkime, virüs gibi çok ilkel ve canlı bile sayılmayan yapılar içerisinde gerçekleşmektedir), DNA'nın doğal şartlar altında üretilebilir olduğunu görmek işten bile değildir. Elbette bu işlem kolay ve bir anda olabilecek bir işlem değildir. Ancak elde bulunan süre düşünülecek olduğunda, bu süreçteki deneme yanılma miktarı ve bunlar içerisinden uyumlu/başarılı olanların sürekli seçilmesi, bunların nasıl mümkün olduğunu göstermektedir.

 

DNA'nın oluşumu, genetik kalıtımın ve dolayısıyla Evrim'in gerçek anlamda başladığı noktadır. Ancak daha önceki yazılarımızda da görüldüğü gibi Evrim Mekanizmaları'ndan ve doğa yasalarından biri olan Doğal Seçilim, bundan öncesinde de moleküler düzeyde etkilidir. Ve yine görülebileceği gibi, aslında bu kadar abartılan bir kimyasal maddenin oluşumu, o kadar da akıl almaz karmaşıklığa sahip değildir. Ne yazık ki konu hakkındaki cahil insanlar, basit ilkokul matematik bilgileriyle Evrimsel Biyoloji'ye meydan okuyabileceklerini sanarak ciddi hataya düşmektedirler. Onların akıllarına gelen soruların hemen hepsi, bilim tarafından onlarca yıl önce cevaplanıp geçilmiş sorulardır. Önemli olan araştırmasını ve sorgulamasını bilmektir.


Burada anlattıklarımızın biyokimyasal temelleri elbette ki bundan daha karmaşıktır. Ancak şimdiye kadar doğal süreçlerle oluşamayacak bir basamak bilinmemektedir. Oldukça karmaşık görülen biyokimyasal zincirler, esasında yapıların fiziksel ve kimyasal nitelikleri dahilinde mecburen olan unsurlardır. Burada devam etmeden önce, bu karmaşık gibi görünen yapıların ne şekillerde kendiliğinden oluştuğuna değinmekte de fayda görüyoruz.


Bu yapılar nasıl kendiliğinden oluşmuş olabilir?

 

Sorunun bilimsel cevabı oldukça basittir: Kimyasal bağlar. Her ne kadar canlılığa özel misyonlar yüklemeye çalışarak, bizi oluşturan yapıların kendiliğinden oluşabildiği gerçeğini ısrarla ve elimizin tersiyle itsek de, ne yazık ki gerçekler, bizim istediklerimiz yönünde olmak zorunda değildirler. Ve bilimsel araştırmalar göstermektedir ki, canlılığı (ya da cansızlığı) oluşturan yapılar, kendiliğinden, daha doğrusu Evren'in (en azından Dünya'nın) bildiğimiz her noktasına etki eden Fizik ve Kimya yasaları etkisi altında oluşabilmektedirler. Dolayısıyla, her ne kadar hayal gücümüzü ve fantezilerimizi tetikliyor olsa da, canlılığı oluşturan yapıların arkasında bir gizem, bir sır aramak hatalı olacaktır; çünkü böyle bir sırra ve hatta bu sırrın gerekliliğine bilimde asla rastlanmamıştır. Bunları biraz açalım:

 

Hepimizin okulda belki de nefret ederek öğrendiğimiz o meşhur bağlar ve onlara dair bilgilerimiz, aslında bir sınavdan yüksek alıp almayacağımızı belirlemekten çok öte işlevlere sahiptirler: Canlılığı (ve cansızlığı) oluşturmaktadırlar! Kovalent bağlar, iyonik bağlar, hidrojen bağları, Van der Waals kuvvetleri ve daha nicesi, sürekli olarak, aralıksız yeni moleküllerin oluşmasını sağlamakta ve kimyasal tepkimeleri tetiklemektedir…

 

Eğer belli atomlardan yeteri miktarda bir kaba koyarsanız ve yeterince beklerseniz, kimyasal yapılarından dolayı bu atomlar arasında bağlar oluşmaya başlayacaktır. Hep verdiğimiz örnek olarak demir atomlarından oluşan bir yapıyı, oksijen zengini bir ortama bırakırsanız, bir süre sonra siz hiçbir şey yapmasanız da, tıpkı "sihir" gibi gelse de kendiliğinden, kimyasal tepkimelerin etkisi altında, kimyasal bağların oluşumu ile demir atomları "paslanmaya", daha doğru tabiriyle "oksitlenmeye" başlayacaklardır. Bu tepkimede bir doğa üstü aramak, hayal gücüne değil, bilgi eksikliğine işaret edecektir. Çünkü arkasında hiçbir gizem bulunmamaktadır.

 

Bahsettiğimiz tepkime ya da aklınıza gelebilecek herhangi bir diğer kimyasal tepkime, tamamıyla elektron yapılarından kaynaklanır. Eğer yörüngelerindeki elektron sayısı gereği bunları “paylaşmaya” meyillilerse (daha doğrusu elektron yapılarından ötürü üzerlerine etkiyen kuvvetler elektron paylaşımını dikte ediyorsa) “kovalent bağlar”; eğer yörüngelerindeki elektronlardan bazıların alıp vermeye meyillilerse (daha doğrusu elektron yapılarından ötürü oluşan kuvvetler, elektronların yörüngelerinden çıkmasını sağlayacak kadar kuvvetli ise) “iyonik bağlar” oluşur. Flor (F), Oksijen (O) ve Azot (N) atomları ile Hidrojen (H) atomu arasında, bu atomların elektronegativite (elektron alma isteği, yatkınlığı) sebebiyle Hidrojen Bağı denen ve hayatın oluşmasında (daha doğrusu bu moleküllerin işlevsel olabilmelerinde) çok önemli rol oynayan bir bağ vardır. Öte yandan Van der Waals Bağları ise daha zayıf bağlardır ve basitçe, eksi yükler ile artı yükler arasındaki çekim ve eksi yükler ile eksi yükler veya artı yükler ile artı yükler arasındaki itim kuvvetlerinden doğmaktadırlar. Geçici ya da kalıcı olabilecekleri gibi, güçlü bağlar değillerdir.

 

Bu kimyasal maddeler arasında oluşan bağların kimini koparmak son derece kolayken, kimini koparmak için oldukça fazla enerjiye ihtiyaç duyulur. Kimi birbiriyle çok hızlı ve kolay şekilde bağ kurar, kimi ise ne kadar zorlarsanız zorlayın birbirine bağlanmaz. Bunlar da, tamamen elementlerin kimyasal ve elektronik yapılarından kaynaklanır. İşte bu sebeple, bazı kimyasal bileşikler çok kararlı yapıdayken, bazıları oldukça dengesizdir ve kolayca parçalanabilir. Benzer şekilde, dev bir molekülün bir kısmı belli kimyasal tepkimelere açıkken, bir kısmı bir diğer tipe açık olabilir, bir kısmı ise son derece kararlı olduğundan tepkimeye hiç girmeyebilir. İşte bu sebeple, oluşabilecek moleküllerin ve bu moleküller arası ilişkilerin sayısının bir sınırı yoktur; sonsuz sayıda olasılık düşünmek mümkündür.

 

Burada sorun, çoğunlukla büyük moleküllerin oluşabilmesi için gereken tepkimelerin "aktivasyon enerjisi"nin çok yüksek olmasıdır. Yani yapıtaşları bir arada bulunsalar bile, kendiliğinden birbirlerine bağlanabilmeleri olanaksıza yakındır ya da en azından çok düşük bir ihtimaldir. Ancak belli ki canlılığın başlangıcında bu olabilmiştir. Peki nasıl?

 

Daha sonra ayrıntısıyla açıklayacağımız üzere, canlılığın başladığı dönemlerde, 600 milyon yıllık bir süreçte Dünya'nın atmosferik ve çevresel koşulları bugünkünden oldukça farklıydı. Her şey çok daha kaotikti ve ısı, ışık, radyasyon gibi etmenler bugünkünden çok daha şiddetli ve farklı etkiyordu. Henüz ozon tabakası bile tam olarak oluşmamıştı - ki bir miktar delindiğinde iklimin nasıl değiştiğini görebiliyoruz. İşte bu durum, kimyasal tepkimelerin doğasını da değiştirmekteydi. Bunun gerçekliğini Miller-Urey Deneyi ile gözleyebildik. Normalde yapıtaşları ve gereken atomlar ile moleküller bir arada bulunsa belki de asla oluşmayacak olan aminoasitler, şekerler ve diğer moleküller, ilkin Dünya koşullarında çok daha hızlı bir şekilde oluşabilmektedirler. Örneğin Miller-Urey Deneyi sayesinde 1-2 hafta gibi kısa sürelerde, bu "Hayat Molekülleri"nin ilkin basamaklarının oluşabildiğini, proteinleri oluşturan aminoasitlerin büyük bir kısmının kendiliğinden oluşabildiğini gördük. Bu, bilimin açıklayıcı gücü adına büyük bir zaferdir.

 

İlk başta bu tepkimelerin nasıl hızlandığına, yeri gelince zaten bu yazı dizisi içerisinde değineceğiz; ancak günümüze bakacak olursak, bu tekimeler oldukça kolay bir şekilde gerçekleşmektedir; hem de Dünya koşulları tamamen değişmesine rağmen. Bu nasıl olmaktadır? Günümüzde, çoğunukla protein yapılı olan (ancak kritik bir şekilde, belli tipleri nükleotit yapılı olan; buna daha sonra geleceğiz), enzim isimli kimyasallar bulunmaktadır. Bu kimyasallar da diğer moleküller gibi son derece sıradandırlar ve proteinlerin değindiğimiz yapılarına tamamen benzemektedirler. Ancak bir özellikleri, onları değerli kılmaktadır:enzimler, ortamda bulunan ve kendileriyle ve birbirleriyle uygun olan moleküllerin kendi aralarındaki tepkimelerini hızlandırırlar. Kimi enzim bu tepkimeleri 5 kat, 10 kat, milyon kat, milyar kat hızlandırabilmektedir. Dolayısıyla başlangıçta 600 milyon yıllık bir deneme-yanılma ve bekleme süresi sonucunda oluşacak enzimler, bir defa "uzun bekleme" sonucu oluşabildikten sonra, kolaylıkla diğer tepkimeleri hızlandırabileceklerdir ve canlılığın gelişimi eksponansiyel olarak (katlı bir şekilde hızlanarak) artabilecektir. Üstelik bir tepkimenin hızlanması için enzim bulunması şart değildir. Kimi zaman basit bir kimyasalın varlığı bile tepkimeleri kat kat hızlandırabilir. Öyle ki, kimi zaman, sadece sıcaklık bile aksi takdirde yıllar alabilecek bir tepkimenin birkaç saatte olmasını sağlayabilecektir. Canlılığın oluşumu sırasında gördüğümüz durum da bunlar ve benzerleridir.

 

 

Bir Molekülün "Göreve" Sahip Olması Ne Demektir?

 

 

Bu moleküller, sonraki yazılarımızda inceleyeceğimiz üzere bazı sözde “görevlere” sahiptirler.Aslında, hiçbir molekülün, hiçbir “görevi” yoktur. Onlar, fiziksel yasalar dahilinde hareket ederler, değişirler, gelişirler, vs. Ancak bunu sağlayan bir bilinçleri ya da amaçları yoktur. Yine de bunların "rastlantısal gibi gözüken" bu hareketleri, bizi "canlı" yapar. Daha doğrusu bizlerin böyle isimlendirme yapmamıza sebep olur, peki ama neden? Aslında cevap, bu sorunun içerisinde gizlidir.

 

Doğaya, olaylara ve olgulara bakarız ve bu sırada beynimizdeki moleküller çeşitli tepkimelere girerler ve bunun total sonucuna “düşünme” deriz. Baktığımız sistem, bazı kimyasalların, bazı diğer kimyasallarla parçalanması ile ilgiliyse ona “sindirim” deriz. Bunda görev alan moleküllerden oluşan hücrelere “sindirim hücreleri” deriz. Halbuki onlar “sindirme göreviyle” donanmış askerler değillerdirOnlar, sadece fiziksel ve kimyasal yasaların gereksinimlerine uyan bilinçsiz atomlar ve atomlardan oluşan moleküllerdir. Ancak bunların bütünü bizi var ettiği için, biz bunları algılarız, algıladığımızı sanarız. Halbuki “algılama” dediğimiz bile sadece kimyasal bir etkileşimdir ve tamamen atomlar ve moleküller aracılığıyla olur. Bunlara daha başka yazılarımızda zaten değineceğiz. Ancak burada bilmemiz gereken, moleküllerin görevleri olduğu yanılgısını biz yaratırız; aslında hiçbir molekül bir "görev" yerine getirmez; sadece, Fizik ve Kimya yasaları etkisi altında yapmak zorunda olduğu olayı yapar: kimyasal tepkimeye girer, itilir, çekilir, parçalanır, birleşir ve benzeri... Bunlar, bir molekülün görevi değildir. Bir atomlar yığını olarak, zaten başka yapabileceği bir şey yoktur. Ancak bir molekül yığınına, dışarıdan müdahale ile belli atomları ve molekülleri eklerseniz (ya da yapısından çıkarırsanız), yaptığı "iş"in tamamen değiştiğini göreceksiniz. Çünkü bu ekleme-çıkarma işi, onun kimyasını ve fiziğini değiştirmiş; bu da üzerindeki yasaların farklı işlemesine sebep olmuştur. Dolayısıyla kimyasalların "görev"ini onların yapısı belirler. Ve bu yapı, doğaüstü bir güç tarafından, bilim dışı bir şekilde değil; yukarıda açıkladığımız şekillerde temel fizik ve kimya yasalarının etkisi altında belirlenmektedir; değişime açıktır ve sürekli olarak değişmektedir de.

 

Kısacası, tüm bu olaylara sebep olanlar, canlıları "canlı", cansızları "cansız" kılanlar Fizik ve Kimya yasalarıdır. Bu yasaları da Evren'in var oluş biçimi belirler. Belki başka bir Evren oluşsaydı bu yasalar oluşmayabilirdi. O zaman da "o Evren"in yasaları dahilinde bazı varlıklar gelişecekti veya belki de"o Evrenler"de, bizim kendi Evrenimiz içerisinde kullanabildiğimiz sıfatlarla tanımlayamayacağımız kadar farklı "varlıklar" gelişecekti. Belki "canlı" kavramı "o Evren"de geçerli olmamakla birlikte, belki de hiçbir şey en başından var olamayacaktı. Bu tamamen Evreni başlatan "patlama" ve bu başlangıçtan doğan parametreler ile ilgilidir. Bunlar, alanımızın çok dışında olduğu için şu anda girmeyeceğimiz; ancak canlılığa bakış açımızı kökeninden değiştirebilecek önemli Fizik gerçekleridir.

 

Umarız açıklayıcı olabilmiştir.

 

Saygılarımızla.

 

Yazan: ÇMB (Evrim Ağacı)


---


Abiyogenez Yazı Dizisinin Diğer Yazıları:

Abiyogenez - 1: Kimyasal Evrim, Canlılık ve Cansızlık Tanımları
Abiyogenez - 2: Canlılığın Temelindeki Moleküllere Giriş: 'Hayat Molekülleri'
Abiyogenez - 3: Nükleotitler, Genler, DNA, Kromozom ve Diğer Genetik Yapıların Özellikleri ve İşleyişi
Abiyogenez - 4: İlk DNA Nasıl Oluştu? - Retrovirüsler, "Önce-RNA Hipotezi" ve "RNA Dünyası Kuramı"
Abiyogenez - 5: Ribozim, RNA ve DNA'nın Evrimi
Abiyogenez - 6: İlkin Dünya Koşullarında Koaservatların Cansızlıktan Evrimi ve Yağların Önemi
Abiyogenez - 7: Büyük Hayat Moleküllerinin Oluşumu ve Canlılığın Cansız Temeli
Abiyogenez - 8: Koaservatların Evriminin Kısa ve Dar Bir Özeti
Abiyogenez - 9: Proteinler Kendi Kendilerine Nasıl Oluştular? Proteinin Oluşma Hesapları Üzerine...
Abiyogenez - 10: Bütün Canlıların Ortak Amacı Neden "Hayatta Kalmak" ve "Üremek"tir?

Kaynaklar ve İleri Okuma:

  1. Biogenesis, abiogenesis, biopoesis and all that, Carl Sagan, Origins of Life and Evolution of Biospheres, Volume 6, Number 4 (1975), 577, DOI: 10.1007/BF00928906
  2. Conversion of light energy into chemical one in abiogenesis as a precondition of the origin of life, T.E. Pavloyskaya, T.A. Telegina, Origins of Life and Evolution of Biospheres, Volume 19, Numbers 3-5 (1989), 227-28, DOI: 10.1007/BF02388822
  3. Abiogenesis and photostimulated heterogeneous reactions in the interstellar medium and on primitive earth: Relevance to the genesis of life, A.V. Emeline et al., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 3, Issue 3, 31 January 2003, Pages 203–224
  4. The possibility of nucleotide abiogenic synthesis in conditions of “KOSMOS-2044” satellite space flight, E.A. Kuzicheva, Advances in Space Research, Volume 23, Issue 2, 1999, Pages 393–396
  5. The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith, Mark D. Nussinov, et al., Biosystems, Volume 42, Issues 2–3, 1997, Pages 111–118
  6. Models for protocellular photophosphorylation, Peter R. Bahn, et al., Biosystems, Volume 14, Issue 1, 1981, Pages 3–14
  7. Evolution and self-assembly of protocells, Richard V. Sole, The International Journal of Biochemistry & Cell Biology, Volume 41, Issue 2, February 2009, Pages 274–284
  8. Sufficient conditions for emergent synchronization in protocellmodels, Journal of Theoretical Biology, Volume 254, Issue 4, 21 October 2008, Pages 741–751
  9. The emergence of ribozymes synthesizing membrane components in RNA-based protocells, Wentao Ma, et al., Biosystems, Volume 99, Issue 3, March 2010, Pages 201–209
  10. The “protocell”: A mathematical model of self-maintenance, Helmut Schwegler, et al., Biosystems, Volume 19, Issue 4, 1986, Pages 307–315
  11. Computational studies on conditions of the emergence of autopoietic protocells, Naoaki Ono, Biosystems, Volume 81, Issue 3, September 2005, Pages 223–233
  12. Bifurcation for a free boundary problem modeling a protocell, Hua Zhang, et al., Nonlinear Analysis: Theory, Methods & Applications, Volume 70, Issue 7, 1 April 2009, Pages 2779–2795
  13. Protocell self-reproduction in a spatially extended metabolism–vesicle system, Javier Macia, et al., Journal of Theoretical Biology, Volume 245, Issue 3, 7 April 2007, Pages 400–410
  14. A nonlinear treatment of the protocell model by a boundary layer approximation, Kazuaki Tarumi, et al., Bulletin of Mathematical Biology, Volume 49, Issue 3, 1987, Pages 307–320
  15. A model for the origin of stable protocells in a primitive alkaline ocean, W.D. Snyder, et al., Biosystems, Volume 7, Issue 2, October 1975, Pages 222–229
  16. Facilitated diffusion of amino acids across bimolecular lipid membranes as a model for selective accumulation of amino acids in a primordial protocell, William Stillwell, Biosystems, Volume 8, Issue 3, December 1976, Pages 111–117
  17. The origins of behavior in macromolecules and protocells, Sidney W. Fox, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, Volume 67, Issue 3, 1980, Pages 423–436
  18. Self-organization of the protocell was a forward process, Sidney W. Fox, Journal of Theoretical Biology, Volume 101, Issue 2, 21 March 1983, Pages 321–323
  19. From prebiotic chemistry to cellular metabolism—Thechemicalevolution of metabolism before Darwinian natural selection,Enrique Melendez-Hevia, et al., Journal of Theoretical Biology, Volume 252, Issue 3, 7 June 2008, Pages 505–519
  20. Natural selection in chemical evolution, Chrisantha Fernando, et al., Journal of Theoretical Biology, Volume 247, Issue 1, 7 July 2007, Pages 152–167
  21. Chemical evolution of amino acid induced by soft X-ray with synchrotron radiation, F. Kaneko, et al., Journal of Electron Spectroscopy and Related Phenomena, Volumes 144–147, June 2005, Pages 291–294
  22. Radiation-induced chemicalevolution of biomolecules, Kazumichi Nakagawa, Radiation Physics and Chemistry, Volume 78, Issue 12, December 2009, Pages 1198–1201
  23. Evolution of DNA and RNA as catalysts for chemical reactions, Andres Jaschke, et al., Current Opinion in Chemical Biology, Volume 4, Issue 3, 1 June 2000, Pages 257–262
  24. Anatomical correlates for category-specific naming of living andnon-living things, Carlo Giussani, et al., NeuroImage, Volume 56, Issue 1, 1 May 2011, Pages 323–329
  25. Formamide in non-life/lifetransition, Raffaele Saladino, et al., Physics of Life Reviews, Volume 9, Issue 1, March 2012, Pages 121–123
  26. Major life-history transitions by deterministic directional natural selection, Lars Witting, Journal of Theoretical Biology, Volume 225, Issue 3, 7 December 2003, Pages 389–406
  27. From the primordial soup to the latest universal common ancestor, Mario Vaneechoutte, et al., Research in Microbiology, Volume 160, Issue 7, September 2009, Pages 437–440
  28. How life evolved: Forget the primordial soup, Nick Lane, The New Scientist, Volume 204, Issue 2730, 14 October 2009, Pages 38–42
  29. Modelling the early events of primordial life, Yu. N. Zhuravlev, et al., Ecological Modelling, Volume 212, Issues 3–4, 10 April 2008, Pages 536–544
  30. From a soup or a seed? Pyritic metabolic complexes in the origin of life, Matthew R. Edwards, Trends in Ecology & Evolution, Volume 13, Issue 5, May 1998, Pages 178–181
  31. Self-organization vs. self-ordering events in life-origin models, David L. Abel, Physics of Life Reviews, Volume 3, Issue 4, December 2006, Pages 211–228
  32. The steroid receptor RNA activator is the first functional RNA encoding a protein, S. Chooniedass-Kothari, et al., FEBS Letters, Volume 566, Issues 1–3, 21 May 2004, Pages 43–47
  33. RNA, the first macromolecular catalyst: the ribosome is a ribozyme, Thomas A. Steitz, et al., Trends in Ecology & Evolution, Volume 28, Issue 8, August 2003, Pages 411–418
  34. Did the first virus self-assemble from self-replicating prion proteins and RNA?, Omar Lupi, Medical Hypotheses, Volume 69, Issue 4, 2007, Pages 724–730
  35. Characters of very ancient proteins, Bin Guang-Ma, et al., Biochemical and Biophysical Research Communications, Volume 366, Issue 3, 15 February 2008, Pages 607–611
  36. Simple coacervate of pullulan formed by the addition of poly(ethylene oxide) in an aqueous solution, Hiroyuki Ohno, et al., Polymer, Volume 32, Issue 16, 1991, Pages 3062–3066
  37. Preparation of polyacrylamide derivatives showing thermo-reversible coacervate formation and their potential application to two-phase separation processes, Hiroaki Miyazaki, et al., Polymer, Volume 37, Issue 4, 1996, Pages 681–685
  38. Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin, Alois Vanerek, et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 273, Issues 1–3, 1 February 2006, Pages 55–62
  39. Complex coacervates as a foundation for synthetic underwater adhesives, Russell J. Stewart, et al., Advances in Colloid and Interface Science, Volume 167, Issues 1–2, 14 September 2011, Pages 85–93

6 Yorum