Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat

Sosyal Medyada Popüler Olan Dijital Fotoğraf Filtreleri Nasıl Çalışır?

Cep Telefonlarınızla Çektiğiniz Fotoğrafları Tek Tuşla Siyah-Beyaz veya Sepya Yapan Algoritmaların Sırrı Ne?

10 dakika
2,178
Sosyal Medyada Popüler Olan Dijital Fotoğraf Filtreleri Nasıl Çalışır?
Tüm Reklamları Kapat

Günümüzde üretilen ve kullanılan kameraların büyük bir çoğunluğu dijital kameralardan oluşmaktadır. Dijital kameralar, eski analog kameraların aksine fotoğrafları, fotoğraf şeridi yerine dijital hafızada depolamaktadır. Dijital kameraların yaygınlaşmasının en önemli sebeplerinden bir tanesi de çok küçük boyutlarda üretilebilir olmasıdır. Bu nedenle dijital kameralar, telefonlar ve bilgisayarlar dâhil olmak üzere birçok yerde kullanılmaya başlanmıştır.

Dijital fotoğrafları değiştirmeye yarayan filtreler ise, özellikle sosyal medyanın yaygınlaşması ile birlikte popülerlik kazanmıştır. Bu yazımızda, özellikle dijital kameralarda kullanılan ve sosyal medyanın dört bir yanını süsleyen dijital filtrelerin nasıl çalıştığına odaklanacağız.

Fotoğrafların İşlenmesi ve Dosya Formatları

Dijital kameralar ile fotoğraf çekilmek istendiğinde, öncelikle ışık, lensten içeri girer. Daha sonra lensten içeri giren ışık, dijital kameralarda yaygın olarak kullanılan CCD (İng: "charge-coupled device") veya CMOS (İng: "Complementary metal-oxide-semiconductor") görüntü sensörlerinden bir tanesinde elektrik sinyallerine dönüştürülür. Basitçe bu sensörler, görüntüyü sıfır ve birler dizisine çevirerek, dijital olarak yapılandırır. Bahsedilen yapılandırma, Kartezyen koordinat sisteminin dördüncü bölgesine yerleştirme işlemi olarak tarif edilebilir. Oluşturulan dijital görüntüyü, her pikselin bir koordinatın yerini aldığı sıfır ve birler dizisi olarak düşünmemiz gerekir.

Tüm Reklamları Kapat

CCD Sensörü
CCD Sensörü
Pixabay

Ancak sadece sıfır ve birlerden oluşan işlenmemiş veri, bir fotoğrafı oluşturmak için yeterli değildir. Çoğunlukla bu işlenmemiş veri, bulunduğu cihaz içerisindeki başka bir yazılımsal araç ile işlenir ve JPEG (İng: "Joint Photographic Experts Group") dosya formatında kaydedilir. Bir JPEG görüntüsü kaydedilirken, işlenmemiş ham görüntü verileri, RGB (İng: "Red-Green-Blue") piksel değerlerine dönüştürülür (bu işlem "demosaicing" olarak da bilinmektedir). Daha sonra elde edilen değerler, çevirme işleminde kullanılan programda daha önce belirlenmiş olan formüllere göre beyaz dengesi, doygunluk ve keskinleştirme gibi ayarlardan geçer. Bu ayarlar, görüntü dosyasında barındırılmak üzere saklanır.

Kameradan yakalandığı haliyle pikseldeki bir renk kanalı başına 12, 14 veya 16 bit bilgi barındıran görüntü, JPEG için varsayılan bit derinliği olan pikseldeki bir renk kanalı başına 8 bit değerine indirgenir. JPEG dosyasına çevirme işlemi, fotoğraf kalitesinde kayıp yaşatacağından görüntü, ham haliyle veya renk kanalı başına daha yüksek bit depolayan dosya formatlarında saklanabilmektedir. Renk kanalı başına daha yüksek bit kaydeden dosya formatlarına örnek olarak 16 bit kapasiteli TIFF (İng: "Tagged Image File Format") dosya formatı verilebilir. Görüntü dosyası işlenmediği halde, "RAW" dosya formatında kalacaktır.

Ham dosya formatı olan RAW görüntü formatı, minimum düzeyde işlenmiş veri içeren kameranın görüntü sensöründen alınan dosyadır. Hiçbir sıkıştırma uygulanmadığından RAW dosyaları, JPEG dosyalarından çok daha büyüktür. RAW dosyaları renk kanallarında 12, 14 veya 16 bit barındıran dosyalardır. Bir görüntü, bir RAW dosyası olarak kaydedildiğinde, dijital kameranın çözünürlüğüne göre değer almaktadır. Daha sonra görüntü dosyası, JPEG olarak kaydedilirse görüntünün renk kanallarındaki değer, 8 bit ile sınırlandırılmaktadır.

Pikseldeki 1 Renk Başına Depolanabilen Bit Değeri Neyi İfade Eder?

Bir piksel; kırmızı, yeşil ve mavi (RGB) olmak üzere üç renk kanalı barındırmaktadır. Bir renk kanalının, bir JPEG dosyasındaki gibi 8 bit barındırması, bir pikselin 24 (8 * 3) bit barındırmasına eşdeğerdir. Bir bit, 0 veya 1 değerini alan bilişimdeki en küçük hafıza birimidir. 8 bit barındıran bir dizinde toplam 8 tane 0 veya 1 bulunmaktadır, yani her bir birim için 0 ve 1 olmak üzere iki ihtimal vardır. Bu durumda bir renk kanalı, ikinin sekizinci kuvveti kadar ton üretme kapasitesine sahiptir.

Tüm Reklamları Kapat

Buna göre, 8 bit değerindeki bir renk kanalı, toplam 256 tonda renk üretebilir. 8 tane sıfırın yan yana gelmesiyle oluşan "00000000" değeri, 0'a karşılık gelir. 8 tane 1'in yan yana gelmesiyle oluşan "11111111" değeri ise 255'tir. 0'dan sayılmaya başlandığı için 256'ıncı değer, "255" sayısı ile ifade edilmektedir. Üç renk kanalının da maksimum değerde olması durumunda görüntü beyaz olacaktır. Üç renk kanalı da minimum değerde olduğu durumda görüntü, "siyah" olarak algılanacaktır. Bu değerlerin arasındaki değerlerde olunduğu sürece pikselin rengi, renk değerlerinin ağırlıklarına göre belirlenecektir.

Piksellerdeki Kırmızı-Yeşil-Mavi Renk Kanalları
Piksellerdeki Kırmızı-Yeşil-Mavi Renk Kanalları
Wikimedia Commons

Bir pikseldeki renk kanallarının farklı değerlere göre üretebileceği tonlar şu şekildedir:

  • Renk kanalı başına 8 bit = 256 tonda kırmızı, yeşil ve mavi
  • Renk kanalı başına 12 bit = 4096 tonda kırmızı, yeşil ve mavi
  • Renk kanalı başına 16 bit = 65536 tonda kırmızı, yeşil ve mavi

Filtrelere Göre Piksellerdeki Renk Değerlerinin Ayarlanması

Filtre uygulanacak fotoğrafın JPEG dosya formatı ile yapılandırıldığını, fotoğrafın çözünürlüğünün 1920x1080 olduğunu ve fotoğrafın görüntülendiği ekranın 1920x1080 boyutunda olduğunu varsayalım. 1920x1080 çözünürlüğünü, tekrar Kartezyen koordinat sisteminde düşünelim. Yatay eksen (+X ekseni) 1920 değer barındırırken, düşey ekseni (-Y ekseni), 1080 değer barındıracaktır. Koordinat sistemindeki her koordinatı bir piksel kabul ettiğimiz takdirde, 2.073.600 tane piksel olacaktır. Her bir pikselde 8 bit değer barındıran 3 renk kanalı varsa, toplam 24 bit barındırma potansiyeline sahip 2.073.600 tane piksel bulunmaktadır.

1920x1080 Bilgisayar Ekranının Koordinatları
1920x1080 Bilgisayar Ekranının Koordinatları
Invent with Python

Anlaşılacağı üzere bir fotoğrafa filtre uygulanması, her pikseldeki renk değerlerinin değiştirilmesi ile mümkündür. Dolayısıyla bunun için uygun bir kod yazılması gerekmektedir. Bu kodun asıl işlevi bütün piksellere uğramak olmalıdır. 1080 tane satır ve 1920 tane sütundan oluşan bir koordinat düzleminde tek tek ilerleyip bütün piksellerin renk değerlerini ayarlayan bir fonksiyona ihtiyaç vardır. Filtreler uygulanırken bu tip bir fonksiyonun hâlihazırda çalıştırıldığını ve bu sayede bütün piksellere ulaşıldığını varsayalım.

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Siyah-Beyaz Filtrelerin Çalışma Mantığı

Siyah-beyaz filtre uygulanan fotoğraftaki her pikselin siyah, beyaz veya grinin bir tonu olarak ayarlanması gerekmektedir. Bu işlem, bir pikseldeki üç renk kanalındaki değerlerin ortalamasının alınması ile başlar. Elde edilen bu değerin tamsayı olmama ihtimali olduğundan, en yakın tamsayıya yuvarlanır. Artık tamsayı olan bu değer, renk kanallarına atanır ve işlem sona erer.

Bir pikselin siyah renkte algılanması için, pikseldeki üç renk değeri de minimum değer olan "0" olarak ayarlanmaktadır. Beyaz renk için ise piksellerdeki renk kanalları, maksimum değer olan "255" olarak ayarlanmalıdır. Ancak 0 ve 255 değerleri en değerler olduğundan, yalnızca önceden siyah veya beyaz olan pikseller dışındaki bütün pikseller grinin bir tonu olacaktır.

Bir pikseldeki üç renk kanalına da aynı değer atandığı zaman gösterilen renk, hâlihazırda gridir. Eğer bu ortalama sayısı, 255’e yakınsa grinin daha açık bir tonu elde edilirken, eğer sayı 0’a yakınsa grinin daha koyu bir tonu elde edilir.

Sepya ve Benzeri Renk Değiştiren Filtrelerin Çalışma Mantığı

Sepya filtreleme veya tonlama, fotoğrafın kırmızımsı kahverengi tonlarda gösterilmesini sağlar. Eskiden siyah-beyaz fotoğrafların daha canlı gözükmesi için kimyasal işlemlerle elde edilen bu fotoğraf hilesi, artık fotoğrafların daha nostaljik gözükmesini sağlamak için kullanılmaktadır. Çok popüler olduğundan dolayı birçok dijital kamerada ve telefonlarda bu filtreye ve benzerlerine rastlanmaktadır.

Piksellerin renk kanallarının, sepya tonlaması gibi özel renklere bürünmesi için önceden belirlenmiş formüller kullanılmaktadır. Sepya için kullanılan formül aşağıda belirtilen şekildedir;

Sepya Renk Değerleri Tablosu
Sepya Renk Değerleri Tablosu

Bu tabloda gösterilen yeni renk değerleri, eski değerlerin belirtilen kesirli sayılarla çarpıldıktan sonra toplanıp en yakın tamsayıya yuvarlanması sonucunda belirlenmektedir. Örneklemek gerekirse; bir pikseldeki yeni kırmızı renginin değeri, eski kırmızının 0.393 ile eski yeşilin 0.769 ile eski mavinin ise 0.189 ile çarpılıp kendi aralarında toplandıktan sonra en yakın tamsayıya yuvarlanması sonucunda oluşmaktadır.

Tüm Reklamları Kapat

Bütün eski renk değerlerinin kullanılarak tek bir renk değerini belirlediği bu formül, fotoğrafları sepya tonlarına yakınlaştırmaktadır. Formül sonucunda renk kanalına atanması beklenen değer 255’ten büyük olabilmektedir. Bu durumun önlemesi için işlem sonucu 255’i geçtiği takdirde, renk kanalı, direkt 255 değerini almalıdır.

Ayna Filtrelerinin Çalışma Mantığı

Ayna tipi filtreler, adından da anlaşılacağı üzere, fotoğrafı çevirmeye yararlar. Düz aynada oluşan yansımayı temel alan bu tip filtreler, görüntüyü dik yönde ters çevirirler. (X, Y) koordinatlarına sahip bir görüntü, ayna filtresinden sonra (-X, Y) koordinatlarına sahip olacaktır.

Diğer filtrelere benzer şekilde ayna filtresinde de bütün pikselleri tarayan döngülere ihtiyaç vardır. Ancak bu filtrede piksellerin renk değerleri değiştirilmeyip piksellerin koordinatları değiştirilmektedir. Aynı sırada kalan pikseller, sütun değiştirerek fotoğrafın yansımasını oluşturmaktadır. Ayna filtresine uygun bir kod yazılırken, piksellerin yerleri sürekli değişeceğinden dolayı, işlem sırasında kullanılmak üzere geçici bir fotoğraf oluşturulmalıdır. Yapılacak değişiklikler geçici görselde yapılmazsa, pikseller yer değiştirirler ancak bir süre sonra yer değiştiren pikseller tekrar yer değiştireceğinden, fotoğrafta istenen gibi bir değişiklik olmaz. Bu yüzden değişiklikler, asıl fotoğraftan alınan piksellerin geçici fotoğrafta konumlandırılması yöntemiyle yapılmalıdır. İşlem bittiğinde geçici fotoğrafın değerleri asıl fotoğrafa aktarılarak asıl fotoğrafın filtre uygulanmış hâli elde edilir.

Tüm Reklamları Kapat

Bulanıklaştırma ve Keskinleştirme Filtrelerinin Çalışma Mantığı

Bir fotoğraf bulanıklaştırılmak istendiğinde, bir pikselin çevresindeki piksellere göre tekrar renklendirilmesi gerekmektedir. Fotoğrafın ne kadar bulanıklaştırılmak istendiğine göre pikselin çevresinde ne kadar pikselin bu işleme dâhil edileceği ayarlanır. Görselin kenarlarında ve köşelerinde bulunmayan pikselleri çevreleyen 8 tane piksel vardır. Kenar piksellerinde 5, köşe piksellerinde ise 3 piksel, asıl pikseli çevrelemektedir.

Bulanıklaştırma işleminin sertliğine göre bir pikselin çevresindeki piksellerden ne kadarının kullanılacağı belirlenir. Eğer piksel, kenarda veya köşede değilse, onu çevreleyen 8 pikseli çevreleyen 16 piksel de bulanıklaştırma işlemine dâhil edildiğinde görüntü, daha bulanık olacaktır. Basit bir bulanıklaştırma işlemi için bir pikselin kendisi ve onu çevreleyen 8 pikselin renk değerlerinin ortalaması alınarak, piksele atanır. Bu işlem, bütün pikselleri içine alacak şekilde devam eder ve işlem sonunda bütün pikseller birbirine daha yakın renklerden oluşur.

Ayna filtrelerindeki gibi, işlemin sağlıklı gerçekleşebilmesi için yazılan kod içerisindeki geçici bir fotoğrafta değişiklikler yapılmalıdır. Yoksa bulanıklaştırma işlemi, sürekli değişen pikseller üzerinden devam eder ve amacına ulaşamaz.

Bulanıklaştırma İşleminin Pikseller Düzeyinde Görünümü
Bulanıklaştırma İşleminin Pikseller Düzeyinde Görünümü

Netleştirme veya keskinleştirme filtreleri ise bir görüntüdeki kenarları belirleyip, vurgulayarak çalışır. Bulanıklaştırma filtresinde olduğu gibi, keskinleştirme filtreleri de piksellerin çevresindeki pikselleri kullanmaktadır. Ancak bulanıklaştırma filtresinin tersine, keskinleştirme filtresi, çevre piksellerin renk değerlerinin ortalamasını almak yerine farklılıkları arar. Eğer bir pikselin çevresindeki piksellerden daha farklı olduğu tespit edilirse bu, görüntüdeki bir objenin veya kenarın belirtisi olarak kabul edilir. Bu sınır noktalarındaki karanlık alanlar daha fazla karartılır ve parlak alanlar daha fazla parlatılır. Böylece kenarlar daha belirgin, gölgeler ise daha koyu hale gelir. Sonuç olarak fotoğrafta öne çıkarılmak istenen nesne, daha dikkat çekici olur.

Tüm Reklamları Kapat

Keskinleştirme Filtresine Bir Örnek
Keskinleştirme Filtresine Bir Örnek
Pentax Rumors

Sonuç

Dijital fotoğraflar gelişip, sosyal medya gibi araçların kullanımına bağlı olarak ihtiyaçlar değiştikçe yazılım mühendisleri de yepyeni algoritmalar ve yöntemler kullanarak fotoğraflarımızı ve hatta yüksek işlemci gücüne sahip telefonlar sayesinde videolarımızı şekilden şekle sokabilecek yöntemler geliştirmektedirler. Ancak her yöntem, aşağı yukarı bu yazıda anlattığımız temel mantığı takip etmektedir: Pikseller veya piksel grupları, istenen etkiyi verecek şekilde manipüle edilir ve gerek anlık olarak gerekse de hâlihazırda çekilmiş bir fotoğrafın manipülasyonunda kullanılır.

Bir dahaki sefere, tek bir tuşla fotoğrafınızı biraz daha "artistik" hâle getirdiğinizde, artık arka planda az çok neler döndüğünü biliyorsunuz.

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
11
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 11
  • Mmm... Çok sapyoseksüel! 5
  • Muhteşem! 2
  • Bilim Budur! 1
  • Güldürdü 1
  • İnanılmaz 1
  • Grrr... *@$# 1
  • İğrenç! 1
  • Korkutucu! 1
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 22/12/2024 07:14:03 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/10764

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Canlı Cansız
Doğa Yasaları
Beslenme Davranışı
Aşı
Diş Hekimi
Savunma
Avrupa
Sendrom
Su Ayısı
Kimyasal Evrim
Değişim
Goril
Deprem
Hastalık Dağılımı
Yayılım
Akıl
Bebek
Nötron
Toprak
Sağlık Bakanlığı
Yıldızlar
Evrimsel Tarih
Kırmızı
Terapi
Canlı
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
C. Afacan, et al. Sosyal Medyada Popüler Olan Dijital Fotoğraf Filtreleri Nasıl Çalışır?. (30 Temmuz 2021). Alındığı Tarih: 22 Aralık 2024. Alındığı Yer: https://evrimagaci.org/s/10764
Afacan, C., Bakırcı, Ç. M. (2021, July 30). Sosyal Medyada Popüler Olan Dijital Fotoğraf Filtreleri Nasıl Çalışır?. Evrim Ağacı. Retrieved December 22, 2024. from https://evrimagaci.org/s/10764
C. Afacan, et al. “Sosyal Medyada Popüler Olan Dijital Fotoğraf Filtreleri Nasıl Çalışır?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 30 Jul. 2021, https://evrimagaci.org/s/10764.
Afacan, Can. Bakırcı, Çağrı Mert. “Sosyal Medyada Popüler Olan Dijital Fotoğraf Filtreleri Nasıl Çalışır?.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, July 30, 2021. https://evrimagaci.org/s/10764.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close