Kolakoski Dizisi Nedir?

Kolakoski Dizisi Nedir?
Kolakoski dizisinin görsel olarak gösterimi.
Picuki
Çağrı Mert Bakırcı Editör Çağrı Mert Bakırcı
5 dakika
4,692 Okunma Sayısı
Notlarım
Reklamı Kapat

Sadece 1 ve 2'lerden oluşan bir sayı dizisi hayal edin: Örneğin 1 1 1 2 1 2 2 1 1 2 2... diye giden bir seri... Ya da 2 2 1 2 2 2 2 1 1 1 1 2 1 gibi... Şimdi, öyle bir seri oluşturun ki, yani bu 1'ler ve 2'leri öyle bir sırada yazın ki, arka arkaya gelen 1'lerin sayısını ve 2'lerin sayısını ayrı bir seri olarak yazdığınızda, ilk seriyle birebir aynı seriye ulaşalım. Karmaşık mı oldu?

Rastgele yazdığımız ilk seriyi ele alalım: 1 1 1 2 1 2 2 1 1 2 2...

Bu seride soldan sağa doğru gidelim ve kaç kere 1 ve 2'lerin üst üste geldiğini ayrı bir seri olarak yazalım:

Reklamı Kapat

  • 1'den 3 tane var, demek ki yeni serimizin ilk sayısı 3.
  • Hemen sonrasında 2'den 1 tane geliyor, demek ki yeni serimizin ikinci sayısı 2.
  • Sonra 1'den 1 tane geliyor, demek ki üçüncü sayımız 1.
  • Sonra 2'den 2 tane geliyor, demek ki dördüncü sayımız 2.
  • Sonra 1'den 2 tane geliyor, demek ki beşinci sayımız 2.
  • Son olarak 2'den 2 tane geliyor, demek ki altıncı sayımız 2.

Yani serimiz: 3 2 1 2 2 2... diye gidecek.

Görebileceğiniz gibi bu seri (3 2 1 2 2 2... diye giden seri), ilk serimiz olan 1 1 1 2 1 2 2 1 1 2 2... diye giden seriyle aynı değil. İşte aradığımız seride, bu iki seri birebir aynı olmalı. Bu yapılamaz mı dersiniz?

Kolakoski Dizisi olarak bilinen şu seriyi düşünün: 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2 1 2 2 1 2 2 1 1...

Kolakoski Dizisi, kendisine eşit olan sonsuz bir 1'ler ve 2'lerden oluşan bir uzunluk dizisidir. İzah edelim: İlk diziyi K1, ikinci diziyi K2 olarak isimlendirirsek;

  • K1’in ilk terimi 1 ve 1 sayısından 1 tane vardır o halde K2 dizisine 1 yazıyoruz.
  • K1’in ikinci terimi 2 ve devam eden 3. terimi de 2 (2’den 2 tane olmuş oldu) K2 dizisinin 2. terimine 2 yazıyoruz; sebebi, K1'de 2 sayısından (1 sayısı da olabilir) 2 tane olması.
  • K1’in 4 ve 5. terimi 1 sayısından 2 tane olduğu için K2 dizisinin 3. terimine 2 yazıyoruz.
  • K1’in 6. terimi 2 sayısından 1 tane olduğu için K2 dizisinin 4. terimine 1 yazıyoruz.

Buna göre, Kolakoski dizisindeki her terimin bir veya iki gelecek terimden oluşan bir dizi oluşturduğu söylenebilir. Yani ikinci dizi, birinci dizinin birebir aynısı olmaktadır; çünkü dizinin ilk 1'i bir "1" dizisi, yani kendisi üretir; ilk 2 kendisini içeren bir "22" dizisi üretir; ikinci 2 bir "11" dizisi üretir ve bu böyle devam eder... Grafiğe dökecek olursak:

Evrim Ağacı'ndan Mesaj

Kolakoski dizisi
Kolakoski dizisi
OEIS Foundation Inc.

Kolakoski Dizisi, ilk olarak bir matematikçi ve makina mühendisi olan ve Princeton Üniversitesi'nde Albert Einstein ile çalışmış olan Rufus Oldenburger (1908-1969) tarafından 1939 yılında yazılan bir makalede geçmektedir. 1956'da Purdue Üniversitesi fakültesine katılan Rufus Oldenburger, uzay yarışında yer alıp, olayların gidişatını etkilemek için mükemmel bir arka plana ve konuma sahip oldu. Üniversitenin Otomatik Kontrol Merkezi'ni kurdu ve alanda öncü araştırmalar yapmak için Purdue'nin tesislerini ve kendisinin mühendislikteki hünerlerini kullandı. Rufus Oldenburger'in oğlu Derek Oldenburger, babasıyla ilgili olarak şunları söylüyor:

Babam NASA ile epeyce çalıştı. Satürn roketinde titreşimle ilgili bir problemleri vardı ve bunu onlar için çözdü. Ayrıca Mariner uzay aracı için yönlendirme sistemi üzerinde çalıştı.

Ancak diziye adını veren, Oldenburger değildi. Diziye adını veren kişi, William Kolakoski (1944-1997) oldu. Kolakoski, aslen bir matematikçi değildi; bir ressamdı. O, diziyi Carnegie Institute of Technology'de öğrenci olan arkadaşlarına tanıttı ve diziyi American Mathematical Monthly'ye (AMM) sundu. Kolakoski, bu diziyi İleri Düzey Problem 5304 (İng: "Advanced Problem 5304") başlığıyla, aşağıdaki formda yayınlandı.

Kolakoski dizisinde sıradaki her sayı, oluşturulacak bir sonraki çalışmanın uzunluğudur ve oluşturulacak eleman 1 ile 2 arasında değişir:

  • 1, 2 (dizi uzunluğu l = 2; terimlerin toplamı s = 3)
  • 1, 2, 2 (l = 3, s = 5)
  • 1, 2, 2, 1, 1 (l = 5, s = 7)
  • 1, 2, 2, 1, 1, 2, 1 (l = 7, s = 10)
  • 1, 2, 2, 1, 1, 2, 1, 2, 2, 1 (l = 10, s = 15)
  • 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2 (l = 15, s = 23)

Görüldüğü gibi, her aşamadaki dizinin uzunluğu, önceki aşamadaki terimlerin toplamına eşittir. Bir başka gösterim olarak, aşağıdaki görseli inceleyebilirsiniz:

Reklamı Kapat

SemanticScholar, Joel Nilsson

Konuya biraz daha açıklık getirmek adına Matematik, Fen ve Sanat alanlarında araştırma yapan Öğretim görevlisi Jean Constant’ın yapmış olduğu algoritmaya bakabiliriz. Burada, birincisinde klasik Kolakoski Dizisinin uzunluğu 100'e kadar olan gösteriminin uygulamasını görüyorsunuz.

Kolakoski Dizisinin klasik gösterimi
Jean Constant, Observable

Burada da yine dizinin uzunluğunun 100'e kadar olan gösterimi verilmiştir; ancak gösterim olarak dairesel bir şekil elde ediliyor.

Kolakoski Dizisinin farklı gösterimi
Jean Constant, Observable

Şu ana kadar Kolakoski dizisi elbette diğer dizi türlerine göre kıyasla biraz farklı görünmekte bu sebepten olayı aklımıza şu soru gelmektedir: Sadece 1 ve 2 mi olmalı?

Kolakoski dizisi, resmi olarak tam sayılardan oluşan bir alfabeye dayanmaktadır ve herhangi bir sayı grubuyla inşa edilebilir. Örneğin, yukarıda verdiğimiz klasik Kolakoski dizisi {1,2} alfabesine sahiptir. Ama başka alfabelerle de Kolakoski dizileri üretebiliriz. Birkaç örnek verecek olursak:

Reklamı Kapat

  • {1,3} alfabesiyle: 1,3,3,3,1,1,1,3,3,3,1,3,1,3,3,3,1,1,1,3,3,3,1,3,3, 3,1,3,3,3,1,1,1,3,3,3,1,3,1,3,3,3,1,1,1,3,3,3,1,3, 3,3,1,1,1,3,3,3,1,3,3,3,...
  • {2,3} alfabesiyle: 2,2,3,3,2,2,2,3,3,3,2,2,3,3,2,2,3,3,3,2,2,2,3,3,3, 2,2,3,3,2,2,2,3,3,3,2,2,3,3,2,2,2,3,3,3,2,2,2,3,3, 2,2,3,3,2,2,2,3,3,3,...
  • {1,2,3} alfabesiyle: 1,2,2,3,3,1,1,1,2,2,2,3,1,2,3,3,1,1,2,2,3,3,3,1,2, 2,3,3,3,1,1,1,2,3,1,1,2,2,3,3,3,1,1,1,2,2,2,3,1,1, 2,2,3,3,3,1,1,1,2,2,2,...

Yani Kolakoski dizisi sadece 1 ve 2'lerden ibaret değildir; farklı uzunlukta farklı alfabeler elde edilmiştir. Bu noktada aklımıza gelen ikinci soru ise şudur: Kolakoski klasik dizisinin uzunluğu ne kadar olursa olsun, 1'ler ve 2'lerden kaç adet vardır?

Klasik Kolakoski Dizisi'inde 1'lerin sayısının "asimptotik olarak" 2'lerin sayısına eşit olup olmadığı sorusu çözümsüzdür, ancak aşağıdaki grafik (1'lerin kesirini basamak sayısının bir fonksiyonu olarak gösterir) 1 ve 2'nin eşit dağıtılmış olmasıyla tutarlı gibi gözükmektedir.

Dizinin yoğunluğu
Dizinin yoğunluğu
WolframMathWolrd

Kolakoski Kaplumbağa Eğrisi

Tanım gereği, n'inci terimin aynı sıradaki ardışık eşit sayıların n'inci sırasının uzunluğuna eşit olduğu 1'ler ve 2'ler dizisi olan Kolakoski dizisine bir kez daha bakalım. Bir dizi yalnızca iki girdiye sahip olduğunda, giriş 1 olduğunda sola veya giriş 2 olduğunda sağa dönen bir "kaplumbağa" yardımıyla görselleştirilebilir. Bu görselleştirme yöntemi, Kolakoski dizisi için özellikle uygun görünmektedir; çünkü 3 eşit giriş dizisi yoktur, yani kaplumbağa asla adımına eşit bir kenar uzunluğu karesi etrafında hareket etmeyecektir. İşte 1,2,2,1,1,2,1... şeklinde giden diziyle eş olarak sol-sağ-sağ-sol-sağ-sol... şeklinde adımlar atan bir kaplumbağanın ilk 300 terim (veya adım) için çizdiği grafik:

Kolakoski kaplumbağa eğrisi (300.terim)
Kolakoski kaplumbağa eğrisi (300.terim)
calculus7

Henüz kendi kendine kesişme yok… Ama 366. adımda nihayet oluyor.

Kolakoski kaplumbağa eğrisi ( 366.terim)
Kolakoski kaplumbağa eğrisi ( 366.terim)
calculus7

Kendi kendine kesişmeler bundan sonra devam ediyor:

Kolakoski kaplumbağa eğrisi (1000.terim)
Kolakoski kaplumbağa eğrisi (1000.terim)
calculus7

Peki neden böyle bir şeyle uğraşılıyor dersiniz? Bu dizinin önemi ne? William Kolakoski'nin yaşamına bir bakış atmak bunu cevaplayabilir.

William Kolakoski
William Kolakoski
Wikimedia

Kolakoski, bir şizofreni hastasıydı ve hayatı boyunca özgür irade ve determinizm konuları ile meşgul oldu. Yüksek zekası ve pek çok farklı beceriyi çok az çabayla ustalaştırma becerisine rağmen, hastalığı, Mike Vargo'nun sözleriyle, "İçinde yaşayan ve her zaman tam anlamıyla kontrolü ele geçirmekle tehdit eden bu şey"di. Aklını kaos ve yanılgı bölgelerine taşıdı. Kendini özgür hissetmek isteyen Kolakoski, ilaç yardımı olmadan kendi beynini kontrol edemeyeceğinin farkındaydı ve determinizmi kabul etmek zorunda kaldı. Kolakoski dizisinin olası bir ifade olduğu, evrende iyimser bir düzen olduğunu düşünüyordu. Dizi, tamamen deterministiktir, ancak öngörülemez ve garip bir şekilde davranır. Kolakoski, dizi üzerine yıllarca çalışmaya devam etti ve bu konuda bir külliyat oluşturdu. Bu çalışmaları, Carnegie Mellon Üniversitesi Kütüphanelerinde William Kolakoski Koleksiyonu olarak tutulmaktadır.

Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • İnanılmaz 6
  • Tebrikler! 5
  • Muhteşem! 4
  • Merak Uyandırıcı! 4
  • Bilim Budur! 3
  • Mmm... Çok sapyoseksüel! 1
  • Grrr... *@$# 1
  • İğrenç! 1
  • Güldürdü 0
  • Umut Verici! 0
  • Üzücü! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 28/11/2021 17:36:18 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/9294

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Kategoriler ve Etiketler
Tümünü Göster
Size Özel
İçerikler
Instagram
Doğal Seçilim
Pandemi
Maske Takmak
Orman
Köpekler
Sağlık Bilimleri
Sars-Cov-2
Evrimsel Tarih
Küresel Isınma
Vegan
Güneş Sistemi
Burun
Galaksi
Astronomi
Virüsler
Genetik
Yüz
Memeli
Yılan
Doğru
Mucize
Mit
Araştırmacılar
Nöron
Öğrenme Teorileri
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Sizi Takip Ediyor

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Bu Eseri Neden Tavsiye Ediyorsun?
Aşağıdaki kutuya, isimli neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin faydalı bulunması halinde Evrim Ağacı kullanıcılarından daha fazla UP kazanman [UP bilgi linki] mümkün olacak. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Tavsiye Et