Alternatif Akım ile Bir İleri Bir Geri Hareket Eden Elektronlar, Her Döngüde Ne Kadar Yol Alır?

Bir Edison Lambanın Filamentini Isıtan Tam Olarak Nedir?

Alternatif Akım ile Bir İleri Bir Geri Hareket Eden Elektronlar, Her Döngüde Ne Kadar Yol Alır?
Yazar Paul Grimshaw
7 dakika
2,395 Okunma Sayısı
Notlarım
Reklamı Kapat

Hangi ders kitabını açarsanız açın, filamentli lambaların ışık saçmasını sağlayan şeyin, ince bir telden geçen elektronların o teli ısıtması sonucu olduğunu söylediğini görürsünüz. Bu doğrudur, ancak bu süreç tam olarak nasıl işliyor? Örneğin alternatif akım altında bir o yana bir bu yana salınan elektronlar nasıl oluyor da filamenti ısıtıyorlar? Bu enerjiyi nereden alıyorlar ve her biri ne kadar güce sahip?

Bunları cevaplayabilmek için, öncelikle her bir elektronun alternatif akım altında nasıl, ne hızda ve ne kadar hareket ettiğini hesaplamamız gerekir. Somut sayılarla ilerleyebilmek adına, gerçekçi bir örneği ele alalım: 50 Hz'lik alternatif akım altındaki elektronların ne kadarlık bir mesafede salındıklarını görmek için, 240 Volt'luk bir devrenin 100 Watt'lık bir ampulü, 1 milimetre karelik (0.01 cm2) kesit alanına sahip bakır tellerle yaktığını düşünebiliriz.

Bu durumda cevap, 3 kısımdan oluşur: Öncelikle elektronların bakır teldeki hareket miktarını (mesafeyi) hesaplayacağız. Sonrasında elektronların ışığı mümkün kılan tungsten filament içinde ne kadar yol kat ettiğini hesaplayacağız. Son olarak, her bir elektronun filamente, filamentin kesit alanı boyunca ne kadar güç verdiğini hesaplayacağız.

Alternatif Akımdaki Elektronların Hareketleri

Akım altındaki elektronların hareket miktarını (λ\lambda) şu formülle hesaplarız:

Reklamı Kapat

λ=QqNA\LARGE{\lambda=\frac{Q}{qNA}}

Burada QQ alternatif akımın yarım döngüsünde akan yük, qq elektron yükü, NN telin yapıldığı malzemenin elektron yoğunluğu, AA ise telin kesit alanıdır.

Bakır Telde Elektronların Hareketi

Verilen bilgilerden akan akımın 100W/240V=0.42A100W/240V=0.42A olduğunu bulabiliriz. Bu, alternatif akımın ortalama değeri gibi düşünülebilir (teknik olarak "karekök ortalaması" veya İng: "root mean square" veya kısaca "RMS" olarak bilinen değerdir). Bu tür bir alternatif akımın doruk noktası 0.59A0.59A değerindedir. Her bir yarı döngüde 0.0038C0.0038C değerinde yük akar. Bunların hepsi matematiksel olarak hesaplanabilir, ancak bunun nasıl hesaplandığını görsel olarak görmek isterseniz, aşağıdaki grafikte yarı-döngünün altında kalan alanın (griye boyanmış kısım) integral hesabıyla bulunabileceğini söyleyebiliriz:

Verilen bilgiler ışığında alternatif akımın davranışını gösteren grafik.
Verilen bilgiler ışığında alternatif akımın davranışını gösteren grafik.

Bir elektronun yükü 1.6×10−191.6\times10^{-19} olduğu için, 0.0038 Coulomb'luk yük, 0.00381.6×10−19=2.4×1016\frac{0.0038}{1.6\times10^{-19}}=2.4\times10^{16} elektrona karşılık gelmektedir. Dolayısıyla bu, yarım döngü içerisinde tel içinde herhangi bir noktada akan elektron sayısıdır.

Evrim Ağacı'ndan Mesaj

Öncelikle bakır telin kendisine bakalım. Bakır telin oda sıcaklığında serbest elektron yoğunluğu 8.5×1022elektron/cm38.5\times10^{22}\text{elektron}/cm^3 düzeyindedir. Bu sayı, bakırın temel özelliklerinden biridir. Bakır atomlarının her biri, akımı taşıyan elektronlara 1 adet katkıda bulunur, dolayısıyla bakır tel içinde santimetre küp başına 8.5×10228.5\times10^{22} atom olduğunu söyleyebiliriz.

0.01 cm2 alana sahip bir tel içinde 8.5×1022∗0.01=8.5×1020elektron/cm28.5\times10^{22}*0.01=8.5\times10^{20}\text{elektron}/cm^2 düzeyinde elektron bulunur. Yani telin her bir santimetre karesinde 8.5×10208.5\times10^{20} adet elektron vardır.

Dolayısıyla 0.0038 Coulomb, telin 2.4×10168.5×1020=0.000028\frac{2.4\times10^{16}}{8.5\times10^{20}}=0.000028 santimetrelik (veya 0.28 μm, yani 0.28 mikrometrelik) kısmındaki yük miktarıdır. Bir diğer deyişle, bir yarı döngü sırasında elektronlar tel içindeki herhangi bir noktada 0.28 μm düzeyinde yol kat ederler.

Tungsten Filamentte Elektronların Hareketi

Aynı hesabı bir Edison Lambası'nı yakan tungsten filamentler için de tekrar edebiliriz. Tunsgstenin elektron yoğunluğu, bakırdan farklıdır: 1.26×1023elektron/cm31.26\times10^{23}\text{elektron}/cm^3. Yani aynı hacimdeki tungsten ve bakır tellerden tungstende, bakıra nazaran 1.5 kat fazla elektron vardır. Ayrıca bir lamba içinde tungsten filamentin sarımlarını açtığınızdaki alanı 1.26×10−5cm21.26\times10^{-5}cm^2'dir. Bu bilgileri en başta verdiğimiz formüle direkt koyacak olursak:

Reklamı Kapat

λ=0.00381.6×10−19∗1.26×1023∗1.26×10−5=0.015cm\LARGE{\lambda=\frac{0.0038}{1.6\times10{-19}*1.26\times10^{23}*1.26\times10^{-5}}=0.015cm}

Bu, 150 μm demektir. Yani tungsten içindeki elektronlar, bakırdakinden 500 kat fazla yol kat etmek zorundadır. Bunun nedeni, tungstenin çok daha ince olmasıdır, dolayısıyla tungsten filament içinde birim uzunluk başına çok daha az sayıda elektron vardır. Buna bağlı olarak da aynı miktarda yükü taşımak için elektronların daha fazla yol kat etmesi gerekir. Üstelik bu, tungstenin elektron yoğunluğu bakıra göre 1.5 kat fazla olmasına rağmen böyledir - bu da olmasa, tungstendeki elektronların daha da fazla yol alması gerekecekti.

Buna rağmen, aldıkları yol halen çok küçüktür: Bir elektronun tungsten içinde kat ettiği yol, telin kendi kalınlığının 7.000'de 1'i kadardır!

Elektron Başına Taşınan Güç

Son olarak, filament boyunca elektrik alanının gücü ile elektronların hareket ettiği mesafeyi bir arada kullanarak, her bir elektronun elektrik alandan aldığı gücü hesaplayabiliriz. Bu da filament boyunca tungsten telin Evren'deki elektrik alandan aldığı toplam gücü hesaplamamızı sağlar.

Reklamı Kapat

Öncelikle tel içindeki elektronların hızının nasıl değiştiğini görmemiz lazım. Bu hız, bir sinüs dalgasını takip eder, çünkü elektronların hızı ile teldeki akım doğru orantılıdır. Elektronların hız grafiğini çizdiğimizde, grafiğin altında kalan alan, elektronlar tarafından kat edilen yola eşittir. Bunun, az önce hesapladığımız gibi 0.015 santimetre olabilmesi için, sinüs dalgasının doruğunun 2.36 cm/sn olması gerekir.

Elektronlar, elektrik alanın üzerlerine uyguladığı kuvvet dolayısıyla filamentin uzunluğu boyunca ivmelenirler. Bu kuvvet, alanın gücü (metre başına volt, yani V/mV/m biriminde) ile elektron yükünün çarpımıyla bulunur.

240V ve 100W'lık bir Edison Lambası'nın içindeki filamentin sarımlarının açılması sonucu elde edilen uzunluk 1.07 metre kadardır. Evet, şaka yapmıyoruz! 1 metreden uzun bir filament, lambanın içine sığdırılabilmek için 2-3 santimetre olacak düzeyde sarılır. Bu filament üzerindeki voltaj ortalama 240V düzeyindedir - ki bunun tepe noktası 339V düzeyindedir. Bu durumda, sinüs dalgası şeklindeki alan gücü 3391.07=317Vm−1\frac{339}{1.07}=317Vm^{-1} doruk düzeyindedir. Bunu elektron yükü olan 1.6×10−19C1.6\times10^{-19}C ile çarparsak, sinüs dalgasının tepe noktasındaki kuvveti 5.07×10−17N5.07\times10^{-17}N olarak hesaplayabiliriz.

Şimdi, temel fiziği kullanabiliriz: Belli bir hızda giden bir cismin üzerine uygulanan kuvvet, ona kuvvetin miktarı ile cismin hızının çarpımı kadar güç aktarır. Dolayısıyla sinüs dalgası şeklindeki kuvveti, sinüs dalgası şeklindeki hızla çarparsak, gücü bulabiliriz. Bunu yaptığımızda, aşağıdaki grafiği elde ederiz. Bu grafik, elektrik alan sayesinde filament içindeki her bir serbest elektrona verilen gücü göstermektedir:

Bu grafiğin skalalası attoWatt (aW) düzeyindedir. 1 aW, 10-18 W güce karşılık gelmektedir. Bu grafikteki tepe noktası, kuvvetin Newton cinsinden tepe noktası ile hızın saniyede metre cinsinden tepe noktasının çarpımıdır:

5.07×10−17∗0.0236=1.2aW5.07\times10^{-17}*0.0236=1.2aW

Agora Bilim Pazarı
Evrim Ağacı Bilim Kitapları Seti (5 Kitap)

Evrime ve modern bilime kapsamlı bir giriş yapıp, evrimsel biyoloji ve bilimsel şüphecilik alanında kendinizi geliştirmek istiyorsanız bu fırsatı kaçırmayın! Bu set ile edineceğiniz ürünler:

  1. Evrim Kuramı ve MekanizmalarıÇağrı Mert Bakırcı
  2. Evrenin Karanlığında Evrimin IşığıKolektif
  3. Şüphecinin El Kitabı, Arsel Berkat Acar ve Çağrı Mert Bakırcı
  4. 50 Soruda Evrim, Çağrı Mert Bakırcı
  5. Yaşayan Dinozor: Avian, Pedram Türkoğlu

Bu kampanya, Ginko Bilim tarafından Evrim Ağacı okurlarına sunulan fırsatlardan birisidir.

Not: Görselde kitaplar ciltli gibi gözükse de, aslında ciltsiz olarak üretilmektedir. Kitapların belli bir okuma sırası bulunmamaktadır; hepsi de birbirinden bağımsız olarak kaleme alınmıştır.

Devamını Göster
₺150.00 ₺201.50
Evrim Ağacı Bilim Kitapları Seti (5 Kitap)

Bu hesaplamada gücün her zaman pozitif olduğuna ve voltaj ile akımın iki katı frekansa (yani 100 Hz frekansa) sahip olduğuna dikkatinizi çekeriz. Bir diğer deyişle, alternatif akım kaynağının hem pozitif hem de negatif yarı-döngüleri sırasında pozitif güç aktarılmaktadır. Bunun zamana göre ortalamasını alırsak (ki bu, grafikte kırmızı çizgi ile gösterilmiştir), ortalama gücün 0.6 aW veya 6×10−19W6\times10^{-19}W olduğunu görebiliriz.

Edison Lambaları Nasıl Çalışıyor?

İşte bu, elektrik alanın filamenti tam olarak nasıl ısıttığıdır. Bir ışık düğmesine bastığınızda, Edison lambaları gibi bir lambayı oluşturan bir filament, yani incecik bir iplik üzerinden geçen güçlü bir elektrik akımı, filamenti oluşturan maddenin atomlarını ısıtır. Çünkü dirençli bir tel üzerinden yüksek bir akım geçirmeye çalışırsanız, Evren'in dokusundaki elektrik alanı, her bir elektrona, elektronun hızı ve elektrik alanın şiddeti oranında güç verir. Elektronlar aldıkları bu güç ile tungsten atomlarına çarparlar, onları daha fazla titreştirirler ve bu titreşim, filamentin ısınmasına neden olur. Zaten "sıcaklık" dediğimiz şey, bir ortamdaki atomların kinetik enerjilerinin ortalamasıdır. O filamentin atomlarının kinetik enerjisi arttıkça, tanım gereği, sıcaklığı da artar. 

Burada kritik bir nokta, lambalarda kullanılan metallerin erime sıcaklığının çok yüksek olmasıdır. Mesela yaygın bir filament malzemesi olan tungsten için bu, 3422 derece civarıdır. Geçirdiğiniz akım, bu sıcaklığa sebep olacak düzeyde olmadığı müddetçe, metal ısındıkça ısınır; ama eriyemez. Yine de bu enerjinin bir yere gitmesi gerekir. Bir kısmı etrafa ısı olarak saçılır; bu nedenle eski tip ampuller etraflarını çok ısıtır. Ama geri kalan enerjinin önemli bir bölümü, tungsten atomu etrafındaki elektronların bir üst orbitale sıçramasına neden olur. Bu elektronlar bu yüksek enerji seviyesinde çok uzun süre kalamazlar, hemen eski hallerine geri dönerler. Bu orbital düşüşü sırasında, iki orbital arasındaki enerji farkı, bir foton olarak etrafa saçılır. Böylece lamba, bulunduğu odayı aydınlatmış olur.

Filamentteki Toplam Güç

Şimdi başladığımız işi bitirelim ve filamentin genelindeki gücü hesaplayalım.

Tungstenin elektron yoğunluğunun 1.26×1023elektron/cm31.26\times10^{23}\text{elektron}/cm^3 olduğunu zaten biliyoruz. Filamentimizin kesit alanı ise 1.26×10−5cm21.26\times10^{-5}cm^2. Dolayısıyla telin her bir santimetresinde 1.26×1023∗1.26×10−5=1.58×10181.26\times10^{23}*1.26\times10^{-5}=1.58\times10^{18} adet elektron vardır.

Her bir elektronun aldığı güç 6×10−19W6\times10^{-19}W olduğu için, filamentin her bir santimetresi için elektronlara aktarılan gücün 1.58×1018∗6×10−19=0.95W1.58\times10^{18}*6\times10^{-19}=0.95 W olduğunu hesaplayabiliriz.

Elbette bu sonuç hiç de şaşırtıcı değil, çünkü zaten en başta lambamızın gücünün 100 W olduğunu söylemiştik. 107 santimetrelik bir telin tamamında 107∗0.95=101.65W107*0.95=101.65W güç bulmaktayız. Yuvarlama hataları ve hata payları çerçevesinde bu, tam da beklediğimiz sonuçtur.

Okundu Olarak İşaretle
Bu İçerik Size Ne Hissettirdi?
  • Tebrikler! 3
  • Bilim Budur! 3
  • Muhteşem! 1
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  1. Türev İçerik Kaynağı: Quora | Arşiv Bağlantısı

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 04/08/2021 15:24:53 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/10727

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Reklamı Kapat
Size Özel
İçerikler
Instagram
Fare
Duygu
Albert Einstein
Yakınsak Evrim
Karar
Element
Mantar
Hafıza
Çekirdek
Devir
Uçma
Aslan
Deprem
Eğilim
Teknoloji
Yemek
Tedavi
Sinir Hücresi
Tarih
Bilişsel
Teori
Çeşitlilik
Algı
Mucize
Darwin
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Reklamsız Deneyim

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, Evrim Ağacı'nda çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza üye girişi yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol
Sizi Takip Ediyor

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın