Yaşlanma Evrimi

Yazdır Yaşlanma Evrimi

Yaşlanma Evrimsel Bir Çelişkidir

Niçin yaşlanır ve ölürüz? Yaşlanma, ya da bazen söylendiği şekliyle ihtiyarlık, ilerleyen yaşla beraber fizyolojik işlevin kaçınılmaz olarak bozulması demek olup nüfus istatistikleri çerçevesince yaşa bağlı olarak ölüm oranında bir artış ve doğurganlıkta bir düşüşle tanımlanmaktadır (Rose 1991, Bronikowksi & Flatt 2010, Görsel 1’e bakınız). Bu durum evrimsel bir çelişki barındırır: Doğal seçilim, organizmaları en uygun şekilde sağkalım ve üreme başarısına sahip olacak tarzda tasarlıyor (Darwinci uyum başarısı) ise, o halde neden evrim ilk iş olarak yaşlanmayı önlemez?

Görsel 1 a) 114 yaşında ölmüş (15 Aralık 1889 – 5 Mart 2004) İspanyol, yüz on yaşın üzerinde bir asırlık çınar olan Joan Riudavets Moll’ün bir fotoğrafı b) Yaşlı insanlarda yaşlanmanın bir göstergesi, göz merceğinin donuklaşması demek olan kataraktlardır. c) İnsanlarda diğer bir yaşlanma belirtisi, atardamar duvarının kalınlaşması/sertleşmesi anlamına gelen aterosklerozdur (koroner arter hastalığıdır). Burada, ağır bir aort damarı ateroskleroz vakası gösterilmektedir. Görsel hakları a) Wikipedia b) Rakesh Ahuja, M.D. c) Dr. Edwin P. Ewing, Jr./CDC.

Aristo’dan başlayarak bilim insanları ve düşünürler yüzyıllar boyunca bu bilmeceyi çözmeye çabaladılar. Örneğin Romalı şair ve düşünür Lucretius, De Rerum Natura (Nesnelerin Doğası Üzerine) adlı eserinde, gelecek kuşaklara yer açtığı için yaşlanmanın ve ölümün faydalı olduğu fikrini savunmuştur. (Bu görüş, biyologlar arasında 20. yüzyıla kadar tutunmuştur.) Ünlü 19. yüzyıl Alman biyoloğu August Weissmann, örneğin Lucretius gibi, seçilimin, daha genç ve daha doğurgan bireylere yer açarak türlerin sağkalımını garantileyen bir ölüm mekanizmasının evrimini destekleyebileceğini öne sürmüştür. Ancak daha sonra bu açıklamanın yanlış olduğu anlaşılmıştır. Şöyle ki, ölümün bireylere ödeteceği bedel, gruba ya da türe getireceği faydadan muhtemelen daha fazla olacağı ve (üreme ile ilgili eşit randıman alındığı varsayılırsa) uzun ömürlü bireyler kısa ömürlülere göre daha fazla yavru bırakacağı için seçilim, böyle bir ölüm mekanizması tercih etmeyecektir. 

Bu sebeple, yaşlanma olgusu için daha basit bir evrimsel açıklama, grup seçilimine dayalı değil de bireysel uyum ve seçilime dayalı bir izah gerektirir. Bu durum, yaşlanmanın “türün iyiliğine olacak şekilde” evrimleşmediğinin farkına varmış olan J.B.S. Haldane, Peter B. Medawar ve George C. Williams adlı üç evrimci biyolog tarafından 1940’larda ve 1950’lerde anlaşılmıştır. Bunun yerine, doğal seçilim ileri yaşlarda işlevi (ve uyum başarısını) sürdürmede verimsiz hale geldiği için yaşlanmanın evrimleştiğini savunmuşlardır. Bu düşünceleri, 1960’larda ve 70’lerde William D. Hamilton ve Brian Charlesworth tarafından matematiksel olarak formalize edilmiş (biçimlendirilmiş) olup günümüzde de deneylerle desteklenmektedir. Yazının geri kalanında, niçin yaşlanıp öldüğümüze dair bu müthiş evrimsel kavrayışlara ve deneysel kanıtlara göz atacağız.

Yaşlanmanın evrimi ile ilgili daha fazla bilgi için okuyucuya şu kaynakları tavsiye edebiliriz: Rose (1991), Hughes & Reynolds (2005), Promislow & Bronikowski (2006), Flatt & Schmidt (2009), ve bu çalışmalardaki kaynaklar, ayrıca Rauschert (2010) ve Shefferson (2010) in Nature Education Knowledge.

 

Seçilimin Gücü Yaşa Bağlı Olarak Azalır

Yukarıda bahsedildiği üzere, Medawar, Williams ve diğerlerini yaşlanmanın evrimsel teorisini geliştirmeye iten temel kavramsal sezişlerin altında, seçilimin yaşa bağlı olarak sağkalım oranını veya doğurganlığı ne derece etkilediğinin ölçümü demek olan “doğal seçilim gücü”nün ilerleyen yaşla beraber azaldığı düşüncesi yatar (Hamilton 1966, Charlesworth 2000, Rose ve ark. 2007, Görsel 2). Fisher, resmî olarak incelememiş olsa da, “Doğal Seçilimin Genetik Teorisi” adlı ünlü kitabında bu fikirden bahsetmiştir (1930). Ayrıca, hem Haldane (1941) hem de Medawar (1946, 1952) aynı sonuca varmışlardır. Haldane (1941) yaşla beraber seçilim gücündeki azalışın Huntington hastalığına sebep olan baskın alellerin nispeten fazlaca yaygın oluşunu açıklayabileceğini öne sürmüştür. Haldane, genel olarak sadece 30 yaş üstü insanları etkileyen Huntington hastalığı hakkında şöyle düşünüyordu: Seçilim böyle bir hastalığı atasal modern öncesi popülasyonlarda etkin bir şekilde yok edemezdi çünkü bu geç-başlangıçlı hastalığı deneyimlemeden çok önce çoğu insan zaten ölmüş olurdu. Bu sebeple hastalık, seçilim tarafından “görülemezdi”, diğer bir deyişle, ona bağımlı olamazdı.

Fisher’ın ve Haldane’in fikirlerine dayanarak Medawar (1946, 1952), yaşlanmanın nasıl evrimleştiğine dair ilk model metni ve grafiğini tamamladı (bir sonraki bölüme bakınız). Medawar’ın argümanı özetle şöyledir: İlk olarak, rakiplerle, yırtıcılarla, patojenlerle (hastalık yapıcılarla), kazalarla ve diğer tehlikeli durumlarla dolu olduğundan doğal çevre çoğu organizma için tehlikelidir. Buradan hareketle, doğal popülasyonlarda çoğu birey, yaşlanamadan ve yaşlanma belirtilerini deneyimleyemeden önce ölür ya da öldürülür. Dolayısıyla bireylerin, ileri bir yaşta hayatta ve üreyebilir (reprodüktif) olma ihtimalleri genellikle çok düşük olur (örn. Moorad & Promislow 2010). İkinci olarak, doğal seçilim gücü ilerleyen yaşla beraber azalır (Görsel 2). Öyle ki seçilim, hayatının geç dönemlerindeki bireylerin performanslarıyla ilgilenmez. Bunun sonucu olarak da faydalı veya zararlı etkiler ilerlemiş yaşlarda ifade edildiğinde seçilim, faydalı etkileri tercih edemez ya da zararlı etkilere karşı savaşamaz. Örneğin, faydalı veya zararlı bir mutasyon üreme yeteneği durduktan sonra meydana gelirse, üreme başarısını etkilemeyecektir. Bu durumda da leyhte ya da aleyhte etkin şekilde seçilemez. Diğer yandan bir mutasyon, daha erken bir zamanda (diyelim ki üreme döneminde) meydana gelecek olsa bile, seçilim onun etkilerini göremeyebilir çünkü dış kaynaklı sebeplerin (extrinsic) - diğer bir deyişle, doğal çevrenin - yol açtığı can kaybı yüksek olursa, o mutasyonu ifade edebilecek olan bireyler büyük bir ihtimalle çoktan ölmüş olurlar.

Görsel 2: Yaşın bir işlevi olarak seçilim gücü. Seçilimin sağkalım ve/veya üreme üzerine ne denli etkili olduğunun ölçümü demek olan “doğal seçilim gücü ya da kuvveti” yaşın bir fonksiyonu olarak etkisini kaybeder. J.B.S. Haldane ve Peter B. Medawar tarafından geliştirilen bu önemli teorik anlayış, daha sonra William D. Hamilton tarafından matematiksel olarak formalize edilmiştir (gösterilmiştir). Renklendirilmiş alanda (“seçilim gölgesi”) seçilim, ileri yaşlara özgü etkileri olan zararlı mutasyonları “göremez” çünkü yaşamın ileri döneminde olumsuz etki yaratan zararlı bir mutasyon, bu mutasyonu taşıyan bireylerin yavrularına yüksek olasılıkla çoktan geçmiş olacaktır ve böylelikle seçilim, böyle bir mutasyonu popülasyondan elemede etkisiz kalacaktır. Seçilimin azalan gücü kavramı, evrimsel yaşlanma teorileri için temel dayanaktır (Görsel 3’e de bakınız). © 2012 Nature Education Fabian and Flatt 2011 Her hakkı saklıdır.

Medawar (1946, 1952) ve Williams (1957), daha sonra Hamilton (1966) tarafından matematiksel ifadesi verilecek olan bu çıkarımların, yaşlanmanın evrimine açılan bir kapı olacağını farketmişlerdir.

 

Mutasyon Birikimi Hipotezi (MB)

Yukarıda bahsedilen mantığa bağlı olarak Medawar, zararlı bir mutasyonun etkilerinin üremenin genel olarak durduğu ve gelecekteki sağkalımın muhtemel olmadığı ileri yaşlarla sınırlı kalması durumunda, olumsuz ileri yaş etkileri ortaya çıkmadan önce negatif mutasyonu taşıyanların o mutasyonu çoktan bir sonraki jenerasyona aktarmış olacağı sonucuna vardı. Böyle bir durumda doğal seçilim, zararlı bir mutasyonu elemede zayıf ve etkisiz olacaktır ve evrimsel zaman içerisinde bu tür etkili nötr mutasyonlar genetik sürüklenme sebebiyle popülasyon içerisinde birikecek ve bu da sonuç olarak yaşlanmanın evrimine yol açacaktır. Bu, Medawar’ın mutasyon birikimi (MB) hipotezi olarak bilinir (Görsel 3A). Böyle bir mutasyon birikimi sürecinin etkileri, bireylerin dış kaynaklı ölümlere daha az maruz kaldığı (örneğin, azalan yırtıcılık sebebiyle oluşan) ortam değişimlerinden sonra organizmal seviyede açığa çıkacak ve böylelikle bireyler, yaşlanma belirtilerini bizzat deneyimleyecekleri yaşa kadar ömür süreceklerdir.

Görsel 3: Mutasyon birikimi ve antagonistik pleiotropi. Üst (A): Mutasyon Birikimi. Medawar, seçilim gücünün yaşla beraber azalması durumunda, seçilimin güçlü olduğu zamanlarda, yani yaşamın ilk yıllarında nötr konumda (etkisiz) olup; seçilimin zayıf olduğu (gölgeli alan) zamanlarda, yani yaşamın ileri dönemlerinde zararlı etkilere sahip olan mutasyonların veya alellerin popülasyon içinde birikeceğini fark etti. Yaşamın ileriki yıllarında görülen bu tür zararlı genetik varyantlar, yaşlanmanın mutasyon birikimi (MB) teorisi adı verilen bir düşünceye, yani yaşlanmanın evrimine yol açabilir. Alt (B): Antagonistik Pleiotropi. Williams erken yaşlardaki güçlü seçilimin, sağkalım ve üreme gücü üzerine yararlı etkileri olan mutasyonları veya alelleri (bu aynı mutasyonlar ve aleller, ileri yaşlarda pleiotropik* zararlı etkiler sergiliyor olsalar bile) tercih edebildiğini fark ederek Medawar’ın düşüncesini daha ileriye taşımış oldu. (Ç.N: *pleiotropi: Bir genin, bir alelin veya mutasyonun iki ya da daha fazla özelliği, süreci veya işlevi etkilemesi.) İleri yaşlarda seçilim zayıf düştüğü için, (özellikle de, aynı varyantlar, erken yaşlarda güçlü seçilim tarafından tercih edilen pozitif etkilere sahip olduğunda) bu tür zararlı genetik etkileri savuşturmada etkisiz kalır (gölgeli alan). Williams’ın bu düşüncesi, yaşlanmanın antagonistik pleiotropi (AP) teorisi olarak bilinir. MB ve AP teorileri, birlikte, evrimsel yaşlanma teorisinin mihenk taşlarını oluştururlar.  © 2012 Nature Education Fabian and Flatt 2011. Her hakkı saklıdır.

Medawar’ın MB hipotezi daha sonra Charlesworth (1994, 2001) tarafından sağlam matematiksel temellere oturtulmuştur. Özellikle meyve sinekleriyle (Drosophila melanogaster) yapılan birkaç deneysel çalışma, kısıtlı da olsa, MB düşüncesini destekleyen deneysel veri sunmuştur (Hughes & Reynolds 2005, Charlesworth 1994, Hughes ve ark. 2002).

 

Antagonistik Pleiotropi Hipotezi (AP)

Evolution’da yayımlanmış etkileyici bir makalede George C. Williams (1957), Medawar’ın fikirlerini bir adım daha ileriye götürdü. Williams’a göre, seçilimin ileri yaşlarda zararlı etkilerle başa çıkamadığı düşüncesi doğruysa, bu durumda, farklı yaşlarda zıt, pleiotropik etkilere sahip mutasyonlar veya aleller var olabilirdi. Diğer bir deyişle, seçilimin güçlü olduğu genç yaşlarda uyum başarısı üzerine yararlı etkiler sergileyen genetik varyantlar, seçilimin zayıf olduğu ileri yaşlarda zararlı etkilere sahip olabilirdi. Bu düşünce, yaşlanma teorisinde antagonistik pleiotropi (AP) hipotezi olarak bilinmektedir (Rose 1991, Flatt & Promislow 2007, Görsel 3B). Williams, yaşamın erken yıllarında gözüken mutasyonların faydalı etkilerinin, ileri yaşlarda zararlı etkilerine baskın çıkması durumunda, bu tür genetik varyantların popülasyon içerisinde tutunup sayıca artacağını ve bunun da yaşlanmanın evrimine yol açacağını vurgulamıştır. Sonuç olarak, Williams’ın hipotezi ışığı altında yaşlanmanın evrimi, gençlik döneminde sağkalım ve üreme için iş başında olan seçilimin adaptasyon sağlayamayan bir yan ürünü olarak görülebilir.

Williams’ın AP hipotezinden doğal olarak çıkan bir sonuca göre, üreme gibi erken-dönem uyum başarısı unsurları, yaşlılıkta sağkalım gibi geç-dönem uyum başarısı unsurlarıyla genetik olarak takas edilmelidir (trade-off). Bunun sonucunda, örneğin, yüksek genç yaş doğurganlığa sahip genotipler, düşük üreme kapasitesine sahip genotiplere kıyasla daha kısa ömürlü olmalıdırlar (Williams 1957, Rose 1991, Charlesworth 1994, Hughes & Reynolds 2005). Buna benzer bir anlayışla Kirkwood’un 1977 tarihli “Harcanabilir Vücut Hücresi (Soma*) Hipotezi” (HVHH) hipotezi, soma bakımı ve onarımına yapılan optimal (en iyi) yatırım düzeyinin, sonsuz sağkalım için gerekli olan düzeyin altında kalacak şekilde evrimleşeceğini öngörür. (*soma: Üreme haricindeki biyolojik işlevleri gerçekleştiren beden bölümleri.) Buradaki düşünce, daha fazla yatırım evriminin karlı olmayacağıdır çünkü böyle bir yatırımın dönüşü, çevre kaynaklı ölümler sebebiyle asla gerçekleşmeyebilir. Dahası, üremeye yapılan yatırım (veya genel anlamda erken-dönem uyum başarısı unsurları), normalde somatik bakım ve onarım için kullanılabilecek olan sınırlı sayıdaki kaynağı kullanabilir. Bu anlamda bu türden kaynak paylaşımı takasları (trade-offs), Williams’ın AP modelinin fizyolojik bir uzantısı olarak görülebilir.

MB’nin AP’ye olan görece sıklığı halen tartışmalı olsa da (normalde iki hipotez de birbirine çok yakındır - Moorad & Promislow 2009), AP kavramıyla tutarlı olan uyum başarısı takaslarının varlığına dair günümüzde sağlam kanıtlar vardır (Flatt & Promislow 2007 ve Moorad & Promislow 2009). Rekabete dayalı enerji veya kaynak paylaşımının (SHY hipotezinden beklenileceği üzere) bu tür takaslara fizyolojik olarak neden olup olmadığı bir nebze tartışmalıdır, fakat takasların kendileri sağlam temeller üzerinedir (Flatt 2011). En önemlisi, Williams’ın öne sürdüğü takas türleri evrimsel düzeyde bulunmuştur: Örneğin, Michael Rose ve Leo Luckinbill laboratuvarlarında yapılmış birkaç deneyde, artırılmış ileri-yaş üreme başarısı için yapay olarak seçilmiş meyve sineklerinin, azaltılmış erken dönem doğurganlığı karşısında uzun ömürlü oldukları görüldü (Rose & Charlesworth 1980, Rose 1984, Luckinbill ve ark. 1984). Bu titiz deneyler, evrimsel yaşlanma teorisini destekleyen ilk somut deneysel test niteliği taşımaktadır (Rose 1991).

Bu sebeple, klasik evrimsel yaşlanma teorisinin iki temel mihenk taşı vardır: MB ve AP. Ancak, her iki modelin de kavramsal olarak benzer oldukları dikkate alınmalıdır: MB hipotezine göre yaşlanma, zararlı ileri-yaş etkilerine sahip etkili nötr mutasyon birikimi aracılığıyla evrimleşir. Oysaki AP’ye göre yaşlanma, yararlı genç-yaş ve zararlı ileri-yaş etkilere sahip mutasyonlar sebebiyle meydana gelir. Gerçekte, muhtemel olarak her iki mutasyon tipi de popülasyon içerisinde yer alır ancak görece sıklıkları henüz bilinmemektedir. Ayrıca, mutasyonal etkilerin yaşa göre dağılımı, bu iki senaryonun öngördüğünden çok daha karmaşık olabilir (Moorad & Promislow 2008).

Yaşam Süresinin Evrimi

Görsel 4: Farklı organizmalar arasında görülen yaşam süresi varyasyonu. Farklı türler ne kadar uzun bir ömür sürdükleri konusunda önemli ölçüde değişiklik gösterirler. (a) Kubbe kabuklu dev Galápagos kaplumbağası (Geochelone elephantopus) yaklaşık 180 yaşına kadar yaşayabilirken (b) (Ephemeroptera böcek takımına ait olan) bazı mayıs sineği türleri yaklaşık yarım saatten sonra ölürler. (c) Dev kaplumbağalardan çok daha yaşlı olan porsuk ağacı (Taxus baccata) gibi belli başlı ağaçların 4.000 ila 5.000 yaş aralığında bazı örnekleri mevcuttur. (d) Tatlı su genus cinsi Hydra polipleri gibi diğer birkaç organizmanın çok yavaş yaşlandıkları; hatta (tartışmalı bir görüş olsa da) ölümsüz olma potansiyeline sahip oldukları düşünülür. Görsel hakları a) Matthew Field. b) Fritz Geller-Grimm. c) Wikipedia. d) Przemyslaw Malkowski

Farklı organizmalar ömürleri bakımından büyük çeşitlilikler gösterirler (Görsel 4). Açıkça anlaşılacağı üzere yaşlanma, ölüm riskini artırdığından yaşam süresini olumsuz etkiler. Seçilim tarafından denetlenmeyen bu içkin (kendiliğinden oluşan) ve adaptasyon sağlayamayan yaşlanma etkileri yaşam süresini etkileyen tek faktör değildir. Yaşlanma meydana gelsin ya da gelmesin, artırılmış üreme başarısına yönelik seçilim karşılığında üreme ömrü, uyarlamalı olarak evrim geçirebilir (Stearns 1992). Daha uzun bir ömür, normal olarak, artırılmış üreme başarısını akla getirir. Bu sebeple düşük yetişkin ölümleri (ömür başına daha fazla üreme olayına izin verdiği için), yüksek çocuk ölümleri (çocuk kaybının telafisi yetişkinleri üremeye zorladığı için) ve bir üreme faaliyetinden bir sonrakine çocuk ölümlerinde görülen yüksek varyasyon (üreme başarısındaki belirsizliği artırdığı ve üreme telafisi gerektirdiği için) gibi faktörlerin tümü üreme ömrünü uzatabilir (Stearns 1992). Seçilimin ömür süresini artırıcı bu etkileri, çocuk ölümlerine oranla yetişkin ölümlerini artırmaya eğilimli etkileri tarafından dengede tutulur. Bunun sonucu olarak, dış çevre kaynaklı yetişkin ölümleri yüksek olursa, seçilim zayıf olur. Bu da yaşlanma gibi içkin sebeplere dayalı daha yüksek ölüm oranlarının evrimine yol açar. Buna ilaveten seçilim, artırılmış üreme başarısını - ve böylelikle daha uzun bir üreme ömrünü - tercih ediyor olsa da yaşam uzunluğu, AP’nin neden olduğu üreme başarısı ve sağkalım arasındaki içkin takaslar tarafından sınırlandırılabilir. Sonuç olarak ömrün evrimi, artırılmış üreme başarısı için seçilim ile içkin yaşa bağlı ölüm unsurlarını artıran faktörler arasındaki bir denge olarak görülebilir (Stearns 1992). 

Bu düşünceler birkaç araştırmacı tarafından deneysel olarak test edilmiş ve kanıtlarla desteklenmiştir. Örneğin, Stearns ve ark. (2000) güzel, deneysel bir evrim modeli kullanarak meyve sineklerini yüksek ya da düşük seviyeli dış çevre kaynaklı yetişkin ölümlerine maruz bırakmışlar ve düşük seviyeli yetişkin ölümlerine maruz bırakılan sineklerin yüksek seviyeli ölümlere maruz kalanlara göre göze çarpan şekilde daha düşük içkin ölüm seviyeleri geliştirdiklerini görmüşlerdir. Diğer bir deyişle yüksek seviyeli ölüme maruz kalan sinekler, düşük seviyeli ölüme maruz bırakılan sineklere göre daha hızlı yaşlanma sürecine girmişlerdir.

Yaşam süresi ve yaşlanma oranı bakımlarından geniş bir genetik varyasyon olduğunu ve yaşlanmanın MB ve ve/veya AP aracılığıyla kolayca evrimleşebildiğini vasayarsak, bu durumda, yaşlanma türler arasında yaygın olmaya mı eğilimlidir? Görünüşe göre, uzun ömürlü türlerin yanı sıra bazı oldukça kısa ömürlüler de dahil farklı türler arasında yaşam süresi bakımından hatırı sayılır ölçüde varyasyon miktarı vardır (Örn. Finch 1990, Görsel 4). Yaşam süresinde görülen bu çeşitliliğin çoğu, dış çevreye bağlı sebeplerden ötürü ölüm seviyelerindeki varyasyonlarla ve semelpor (bir defaya mahsus üreyen) canlılar da dahil olmak üzere farklı optimal üreme ömürlerinin evrimiyle kolaylıkla açıklanabilmektedir (Stearns 1992). Örneğin, bir kabuğa sahip, uçabilen veya zehirli olan ve bu şekilde avcılardan iyi şekilde korunabilen türler, daha az korunabilenlere göre daha uzun yaşamaya eğilimlidirler (Austad & Fischer 1991, Blanco & Sherman 2005). Fakat, acaba ölümsüz organizmalar var mıdır? Çok yavaş yaşlanan organizma örnekleri mevcut olsa da (örn. Finch 1990, Görsel 4’e bakınız), gerçekten hiç yaşlanmayan türlerin olup olmadığı hala gizemini korumaktadır. Bu hususta bakteriler, iyi bir tartışma konusudur.

Uzun bir süredir, bakterilerin yaşlanmadığı düşünülmekteydi. Aslına bakılacak olursa, Williams’ın yaşlanmanın evrimi hakkında dile getirdiği en güçlü savlardan biri sadece eşey hücre öncülleri* ve soma ayrımı olan organizmaların yaşlanması gerektiği fikriydi. (Ç.N: *eşey hücre öncülleri/germ hattı: Yumurtaların ve spermlerin oluşumuna izin veren uzmanlaşmış kök hücre dizisi.) Bu tür organizmalarda, eşey hücre öncüllerinin bakımı sınırsız olarak yapılır ancak yaşlanan soma, üreme görevini yerine getirdikten sonra artık “harcanabilir/gözden çıkarılabilir” durumdadır. Buna nazaran bakteriler, belirgin bir eşey hücre öncülleri ve soma ayrımı sergilemezler ve bu sebeple ölümsüz olmaları beklenir. Belirgin bir eşey hücre öncülleri/soma ayrımının olmayışından daha önemlisi, prokaryotlarda, protozoalarda (bir gözeli hayvanlarda), alglerde ve simetrik bölünen tek hücrelilerde bariz bir şekilde ayrılmış yaş sınıflarının olmayışıdır (Rose 1991, Partridge & Barton 1993). Örneğin, simetrik bölünen tek hücrelilerde, ebeveyn ve yavrunun fenotipik (soytürel) olarak birbirlerinden ayırt edilemez oluşlarından dolayı bireyler yaşlanmamalıdırlar. Diğer bir deyişle, genci yaşlıdan ayırt etmek olanaksız olduğu için yaş, seçilime tabi değildir. Aynı mantıktan hareketle yaşlanma, yaşlanan ebeveynlerin yavrularından fenotipik olarak ayırt edilebildiği asimetrik çoğalan organizmalarda meydana gelmelidir.

Gerçekten de asimetrik bölünen bir bakterinin yaşlılık belirtileri gösterdiği yakın zamanda bulundu (Ackermann ve ark. 2003). Ancak simetrik bölünen E. coli’nin bile yaşlandığını belirtmek isteriz: E. coli, hücreiçi anne-yavru asimetrisi göstermektedir. Bu da yaşlılığın meydana gelmesi için seçilimin müdahale edebildiği yaş sınıflarını şekillendirir (Stewart ve ark. 2005). Ackermann ve ark., ayrıca, canlılık tarihinde yaşlanmanın kökenini modellemiş ve hücreler simetrik olarak bölündüklerinde bile, tek hücrelilerin, kolaylıkla, yavru hücreler içerisinde asimetrik ve eşit olmayan bir hasar dağılımı durumu geliştirdiklerini ortaya koymuşlardır. Ancak böylesi bir asimetri evrimleşir evrimleşmez, yaşlanma da evrimleşmektedir. Bu sebeple yaşlanma (farklı türler arasında yaşam süresi bakımından muazzam ölçüde varyasyon olmasına rağmen) hücresel yaşamın esas ve kaçınılmaz bir özelliği gibi görünmektedir.

 

Özet

Evrimsel biyologların yaşlanmanın evrimi hakkındaki düşüncelerini aktardık. Günümüzde, yaşlanmanın olumlu olacak tarzda seçilmiş, programlı bir ölüm süreci olmadığı ve “türlerin iyiliği için” evrimleşmediği açıklık kazanmıştır. Böyle olmaktan ziyade yaşlanma, yaşlılıkta sağkalımı, üremeyi ve somatik onarımı devam ettirmede zayıf ve etkisiz kalan seçilim yüzünden var olan bir yaşamsal özelliktir. Yaşın bir fonksiyonu olarak seçilim gücünün zayıf düştüğü gözlemine dayanarak, organizmaların niçin yaşlanıp öldüğünü açıklamak için iki ana hipotez formüle edilmiştir: mutasyon birikimi hipotezi (MB) ve antagonistik pleiotropi hipotezi (AP). MB’ye göre yaşlanma, yaşamın ancak geç dönemlerinde kendilerini gösteren zararlı mutasyonlar seçilim tarafından etkili bir şekilde elenemediği için evrimleşmektedir. AP’ye göre ise yaşlanma, yaşamın erken döneminde artırılmış uyum başarısını elde etmek adına seçilimin adaptasyon sağlayamayan bir yan ürünü olarak evrimleşmiştir. Diğer bir deyişle yararlı erken dönem etkileri, yaşlanmaya yol açan zararlı ileri yaş etkilerini genetik olarak beraberinde getirir. Yaşlanma, açıkça görüldüğü üzere, yaşam süresini kısaltır ancak yaşam süresi, aynı zamanda, üreme olaylarının sayısını artırmak amacıyla seçilim tarafından belirlenir. Bundan dolayı yaşam süresinin evrimi, üreme evresini uzatan seçici faktörler ile onu kısaltan içkin (kendiliğinden) ölüm unsurları arasındaki bir dengedir. Gerçekten ölümsüz organizmaların var olup olmadığı tartışmalıdır ve son zamanlardaki kanıtlar, aslında, yaşlanmanın tüm hücresel yaşamın kaçınılmaz bir özelliği olma ihtimaline işaret etmektedir.

 

Yazan: Daniel Fabian (Nüfus Genetiği Enstitüsü, Vetmeduni Vienna Veterinaerplatz 1, A-1210 Vienna, Austria) & Thomas Flatt (Nüfus Genetiği Enstitüsü, Vetmeduni Vienna Veterinaerplatz 1, A-1210 Vienna, Austria) © 2011 Nature Education 

Orijinal Kaynak: Nature

Çeviren: Ayşegül Şenyiğit 

Düzenleyen: Şule Ölez 

Kaynaklar ve İleri Okuma:

Ackermann, M. et al. Senescence in a bacterium with asymmetric division. Science 300, 1920–1920 (2003).

Ackermann, M. et al. On the evolutionary origin of aging. Aging Cell 6, 235–244 (2007).

Austad, S. N. & Fischer, K. E. Mammalian aging, metabolism, and ecology: Evidence from the bats and marsupials. Journal of Gerontology 46, B47–B53 (1991).


Bailey, C. Titi Lucreti Cari De Rerum Natura. Volume 3, Oxford, UK: Clarendon Press, 1947.

Blanco, M. A. & Sherman, P. W. Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mechanisms of Ageing and Development 126, 794–803 (2005).

Bronikowski, A. M. & Flatt, T. Aging and its demographic measurement. Nature Education Knowledge 1, 3 (2011).

Charlesworth, B. Evolution in Age-Structured Populations. Cambridge, UK: Cambridge University Press, 1994.

Charlesworth, B. Fisher, Medawar, Hamilton and the evolution of aging. Genetics 156, 927–931 (2000).

Hughes, K. A. & Reynolds, R. M. Evolutionary and mechanistic theories of aging. Annual Review of Entomology 50, 421–445 (2005).

Hughes, K. A. et al. A test of evolutionary theories of aging. Proceedings of the National Academy of Sciences of the United States of America 99, 14286–14291 (2002).

Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).

Luckinbill, L. S. et al. Selection for delayed senescence in Drosophila melanogaster. Evolution 38, 996–1003 (1984).

Medawar, P. B. Old age and natural death. Modern Quarterly 1, 30–56 (1946).

Medawar, P. B. An Unsolved Problem of Biology. London, UK: H. K. Lewis, 1952.

Moorad, J. A. & Promislow, D. E. L. What can genetic variation tell us about the evolution of senescence? Proceedings of the Royal Society B: Biological Sciences 276, 2271–2278 (2009).

Moorad, J. A. & Promislow, D. E. L. Evolution: Aging up a tree? Current Biology 20, R406–R408 (2010).

Partridge, L. & Barton, N. H. Optimality, mutation and the evolution of ageing. Nature 362, 305–311 (1993).

Promislow, D. E. L. & Bronikowski, A. "Evolutionary genetics of senescence," in Evolutionary Genetics: Concepts and Case Studies, eds. C. W. Fox & J. B. Wolf (Oxford University Press, 2006) 464–481.

Rauschert, E. Survivorship curves. Nature Education Knowledge 1, 18 (2010).

Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogasterEvolution 38, 1004–1010 (1984).

Rose, M. R. Evolutionary Biology of Aging. New York, NY: Oxford University Press, 1991.

Rose, M. R. & Charlesworth, B. A test of evolutionary theories of senescence. Nature 287, 141–142 (1980).

Rose, M. R. et al. Hamilton's forces of natural selection after forty years. Evolution 61, 1265–1276 (2007).

Shefferson, R. P. Why are life histories so variable? Nature Education Knowledge 1, 1 (2010).

Stearns, S. C. The Evolution of Life Histories. Oxford, UK: Oxford University Press, 1992.

Stearns, S. C. et al. Experimental evolution of aging, growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences of the United States of America 97, 3309–3313 (2000).

Stewart, E. J. et al. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology 3, 295–300 (2005).

Weissmann, A. Essays on Heredity. Oxford, UK: Clarendon Press, 1891.

Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

6 Yorum