Time Dilation
Zaman genişlemesi bir nesne başka bir nesneye göre hareket ettiğinde ortaya çıkar. Bir nesne ne kadar hızlı hareket ederse sabit bir gözlemciye göre onun için zaman o kadar yavaş akar.
Hızların Göreliliği
Işık hızına yakın hızlarla uğraşırken basit toplama geçerli değildir. Bunun yerine özel görelilik hızları birleştirmek için göreli hız toplama formülünü kullanır.
Işık Hızı Sınırı
Özel göreliliğe göre kütleli hiçbir nesne ışık hızına ulaşamaz veya onu aşamaz. Göreli hız toplama formülü de bu sınırlamaya uyulmasını sağlar.
Göreli Hız Toplama Formülü
Eğer iki nesne birbirine göre ve hızlarında hareket ediyorsa sabit bir gözlemciye göre birleşik hızları şu şekilde bulunur:
burada:
ve nesnelerin hızlarıdır.
, ışık hızıdır
Senaryonuza bu formülü uygulayalım:
Tren Hızı
Yürüyen Yolcu Hızı
Işık Hızı
Göreli toplama formülünü kullanarak:
Basitleştirirsek:
Çünkü çok küçük bir değerdir bu nedenle yaklaşık olarak:
Birleşik hız kabaca olup yolcunun hareketi trenin hızına ekleniyor.
Ancak ışık hızına kıyasla hızlar çok düşük olduğu için göreli düzeltme çok küçüktür. Bu hızlarda zaman genişlemesi etkisi ihmal edilebilecek kadar küçüktür.
Görelilik, hızların ’yi aşmasını önler. Yüksek hızlarda bile toplama etkisi paydadaki terimi sayesinde hiçbir nesnenin ışık hızını aşmasına izin vermez.
Her İki Durum İçin Zaman Genişlemesi
Oturan bir yolcu trenin hızından kaynaklanan zaman genişlemesini deneyimler.
Yürüyen bir yolcu birleşik hızdan dolayı biraz daha fazla zaman genişlemesi yaşar.
Ancak bu hızlar ışık hızına yakın olmadığından zaman genişlemesi farkı çok küçüktür.
Dolayısıyla hızların basit bir şekilde toplanması gerektiği sezginiz doğru olsa da göreli düzeltmeler bu hızların ışık hızını aşmasını önler.[1]
Kaynaklar
- Libretexts. 13.5: Relativistic Addition Of Velocities. (15 Ağustos 2021). Alındığı Tarih: 4 Eylül 2024. Alındığı Yer: Physics LibreTexts | Arşiv Bağlantısı