Öklid: Geometri Oyunu

Bu yazının içerik özgünlüğü henüz kategorize edilmemiştir. Eğer merak ediyorsanız ve/veya belirtilmesini istiyorsanız, gözden geçirmemiz ve içerik özgünlüğünü belirlememiz için [email protected] üzerinden bize ulaşabilirsiniz.

Siteye Gitmek İçin: Euclid The Game

Matematiği tepeden inme bir şekilde öğrenmek çoğu zaman hüsranla veya içi boş, anlamsız bir ezber yığınıyla sonuçlanır. Kişinin ufkunu açacağına, daraltır. Halbuki matematik ve bir nevi ondan doğan geometri, bilimin iletişim aracıdır. Bu dili öğrenenler akademik düzeyde iletişim kurabilirler. Bu dili kullanabilenlerse, bilimi üretirler. Hep sorulur "Bu öğrendiklerimiz ne işe yarayacak ki?" Şu anda bu cümleyi kurup milyonlara tek bir tıklamayla aktarabiliyorsanız, bunu o bilgiler sayesinde inşa ettik. Karaciğeriniz iflas etmiş halde hastaneye koştuğunuzda hayatta kalabiliyorsak, sizi yaşama döndüren ilaçları okulda öğrendiğiniz o bilgiler sayesinde ürettik. Kısaca medeniyeti, o okullarda gördüğümüz matematikle, fizikle, kimyayla, biyolojiyle ve bunların uygulanmasını sağlayan mühendislikle, mimarlıkla, ekonomiyle inşa ettik. Evet, eğitimin insan zekasına hakaret edecek düzeyde bağnaz, kapalı ve tek yönlü olduğu konusunda hemfikiriz. Ancak eğitim sistemine kafa tutarken, "eğitim"in kendisine kafa tutmadığımızdan emin olmak gerekiyor.

İşte sisteme kafa tutarken yapabileceğiniz en sağlıklı yaklaşımlardan biri, muhtemelen, kendi kendinizi eğitmek olacaktır. Yine az önce sözünü ettiğimiz bilgiler sayesinde inşa ettiğimiz medeniyet, aslında buna fazlasıyla müsaade etmektedir. Elbette hiçbir şahsi araç, sistemli bir eğitimin yerini tutmayacaktır belki; ancak onu pekiştirebilir ve hayatımız içerisinde uygulamaya koymamızı sağlayabilir. Bu sebeple, yazılımcılar tarafından geliştirilen araçlar çok kritik bir öneme sahip olmaktadır.

Aşağıda göreceğiniz oyun, matematiğin ve geometrinin temellerinin anlaşılabilmesi için geliştirilmiştir. 5 temel geometrik ilişki kullanarak (iki eğrinin kesişimi, düzlem içerisindeki bir nokta, doğru parçası, ışın ve çember) çeşitli görevleri tamamlamanız istenmektedir. Bu görevleri tamamlarken, geometrinin de temellerini öğrenebileceksiniz. Ancak oyun, sandığınız kadar kolay olmayacaktır. Bölüm listesinin altında, ilk bölümün bir analizini yapmaktayız. Diğer bölümler ise size aittir.

Siteye Gitmek İçin: Euclid The Game

20 bölümden oluşan bu oyunda her bir bölümde yapmanız istenenler Türkçe olarak aşağıda verilmiştir:

Bölüm 1: AB doğru parçasından bir eşkenar üçgen inşa edin.

Bölüm 2: Verilen doğru parçasının orta noktasını oluşturun.

Bölüm 3: Verilen açıyı ikiye bölen bir doğru oluşturun.

Bölüm 4: Verilen doğru parçasına dik olan ve A noktasından geçen bir doğru (parçası) oluşturun.

Bölüm 5: AB doğru parçasına dik olan ve C noktasından geçen bir doğru (parçası) oluşturun.

Bölüm 6: C noktasından geçen bir paralel doğru oluşturun.

Bölüm 7: AB doğru parçasıyla aynı uzunlukta ve aynı yönde olan ama C noktasından başlayan bir doğru parçası oluşturun.

Bölüm 8: C merkezli ve yarıçapı AB doğru parçasına eşit olan bir çember oluşturun.

Bölüm 9: CD doğru parçası üzerinde CE doğru parçasın uzunluğu AB doğru parçasın uzunluğuyla aynı olacak şekilde yeni bir E noktası oluşturun.

Bölüm 10: Kenarları verilen doğru parçalarıyla aynı uzunluklarda olan bir üçgen oluşturun. Taban AB olsun.

Bölüm 11: Verilen doğru üzerinde verilen açıya eşit bir açı oluşturun.

Bölüm 12: Verilen çemberin merkezini bulun.

Bölüm 13: B noktasında çembere teğet bir doğru (parçası) oluşturun.

Bölüm 14: Üçgenin iç teğet çemberini oluşturun.

Bölüm 15: Üçgenin çevrel çemberini oluşturun.

Bölüm 16: Bir doğru, CD doğru parçası ve O noktası veriliyor. Verilen doğrudan CD'ye eş bir parça kesen O merkezli bir çember oluşturun.

Bölüm 17: A noktası, bir doğru ve üzerinde bir B noktası veriliyor. A noktasından geçen ve B noktasında doğruya teğet olan bir çember oluşturun.

Bölüm 18: AB yarıçaplı öyle iki çember daha oluşturun ki üç çemberin herhangi ikisi birbirine teğet olsun.

Bölüm 19: Verilen doğru parçasını üç eşit parçaya ayıracak iki nokta oluşturun.

Bölüm 20: Her iki çembere de teğet olan bir doğru oluşturun. Çemberlerin arasından geçmeyen bir teğet doğrusu oluşturun.

1. Bölüm Analizi

İlk bölümde bizden bir eşkenar üçgen çizmemiz istenmektedir. Ancak bir açıölçer olmaksızın, eşkenar bir üçgeni sadece göz kararı ile ve hiçbir geometrik ilişkiden faydalanmaksızın çizmemiz imkansızdır. Ne kadar uğraşırsanız uğraşın, kusursuz bir eşkenar üçgeni göz kararı çizemezsiniz. Bu sebeple basitçe, geometrinin temellerinden faydalanacağız. 

Bir çemberin merkezini çevresine birleştiren her doğru parçasının uzunluğu birbirine eşittir ve buna yarıçap denir. Bu durumda, bir çember içerisindeki yarıçapların daima eşit olmak zorunda olması gerçeğinden yola çıkarak, bir eşkenar üçgen çizebiliriz. Tek yapmamız gereken, öncelikle rastgele bir doğru parçası çizmektir:

Daha sonra, bu doğru parçasının iki ucunu kullanarak iki adet çember çizebiliriz. İlk çemberimizin merkezi sol taraftaki A noktası, ikinci çemberimizin merkezi ise sağ taraftaki B noktası olmalıdır. Ancak bu iki çemberin yarıçaplarının birbirine eşit olabilmesi için, A noktasını merkez olarak belirledikten sonra, B noktasını ikinci nokta olarak belirlemeliyiz. Aynı şekilde, ikinci çember için, B noktasını merkez olarak seçtikten sonra, A noktasını çemberi çizmemizi sağlayacak ikinci nokta olarak belirlemeliyiz. Çünkü bir çember, ya merkezi ve yarıçapı belirlenerek çizilebilir; ya da üzerindeki üç nokta belirtilerek... Burada, ilk yöntemi kullanıyoruz. İlk noktayı seçtiğimizde merkezi seçmiş oluyoruz, ikinci noktayı seçtiğimizdeyse yarıçapını AB doğru parçasının uzunluğuna eşit olarak belirlemiş oluyoruz. Aynı şekilde, B'yi merkez alıp ikinci nokta olarak A'yı seçtiğimizde, ikinci çemberimizin yarıçapını BA doğru parçası olarak belirlemiş oluyoruz. AB doğru parçası ile BA doğru parçasının uzunlukları eşit olduğundan, birbirine eş iki çember çizmiş oluyoruz:

Daha sonra, bu iki çemberin kesiştiği iki noktadan herhangi birini seçebiliriz. Dikkat edecek olursanız çemberler, üstte ve altta olmak üzere 2 farklı noktada kesişmektedir. Merkezleri bu noktaya birleştiren doğru parçaları, iki çember için de yarıçapa eşit olacaktır. İki çemberimizin de yarıçapını AB olarak seçtiğimiz için, A ve B noktalarını, iki çemberin kesişimine birleştirdiğimizde (yarıçap elde ediyor olmamızdan ötürü) ortaya çıkan yeni doğru parçaları da, yarıçapa eşit uzunlukta olacaktır. Dolayısıyla bir eşkenar üçgen elde edebiliriz. Öncelikle, kesişim noktalarını gösterelim:

Artık hangisini kullandığınız önemli değildir. Tek yapmanız gereken, bu kesişim noktalarından birini (C veya D'yi), hem A, hem de B'ye birleştirmektir. Bunu yaptığınızda, bir eşkenar üçgen elde edersiniz:

İşte bu kadar!

Diğer bölümlerde başarılar!

Teşekkür: Caner Tekin

Kaynak: Matematik Dünyası Dergisi

Orangutanlar ve İnsanlar

Pangolin ve Yavrusu

Yazar

Çağrı Mert Bakırcı

Çağrı Mert Bakırcı

Yazar

Evrim Ağacı'nın kurucusu ve idari sorumlusudur. Popüler bilim yazarı ve anlatıcısıdır. Doktorasını Texas Tech Üniversitesi'nden almıştır. Araştırma konuları evrimsel robotik, yapay zeka ve teorik/matematiksel evrimdir.

Konuyla Alakalı İçerikler

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim