Paylaşım Yap
Tüm Reklamları Kapat

Matematiksel Homoloji Nedir? Topolojinin Bir Alt Başlığı Olan Homoloji, Pratik Olarak Hangi Alanlarda Kullanılır?

5 dakika
881
Matematiksel Homoloji Nedir? Topolojinin Bir Alt Başlığı Olan Homoloji, Pratik Olarak Hangi Alanlarda Kullanılır? Math KTH
Tüm Reklamları Kapat

Matematik dünyasının son zamanlarda en çok ilgi çeken alanlarından biri olan Topoloji, sürekli deformasyonlar altında değişmeyen uzayların ve özelliklerinin incelendiği bir alt bilim dalıdır.[1] Bazı tarihçiler topolojinin kökeninin Euler'ın çalışmalarında yattığını öne sürerken bazıları ise topolojinin başlangıç noktasının Fransız Matematikçi Henri Poincaré'nin 1895 tarihli Analysis Situs kitabı olduğunu iddia eder.[2]

Topolojinin temel bir cebirsel kavramı olarak bilinen Homoloji, Abel Grupları veya modüller gibi cebirsel dizileri topolojik uzaylar gibi diğer matematiksel nesnelerle ilişkilendirmenin bir yoludur.[3] Matematikçiler tarafından özellikle topolojiyi daha iyi anlayabilmek için kullanılan homolojinin tarihi Alman matematikçi Bernhard Riemann ve İtalyan matematikçi Enrico Betti'nin çalışmalarıyla başlamıştır.[4], [5]

Homoloji gruplarını tanımlamaya yönelik orijinal motivasyon, iki şeklin birbirinden ayırt edilebilmesi için deliklerinin incelenmesinin yeterli olabileceğine yönelik bir gözlemdi. Örneğin, bir çember bir disk değildir, çünkü disk katı iken çemberin içinden bir delik vardır. Küre ise bir çember değildir, çünkü küre iki boyutlu bir deliği, çember ise bir boyutlu bir deliği çevreler. Bununla birlikte, bir delik "orada olmadığı" için, bir deliğin nasıl tanımlanacağı veya farklı türden deliklerin nasıl ayırt edileceği hemen açık değildir.

Tüm Reklamları Kapat

Homoloji, başlangıçta bir manifolddaki delikleri tanımlamak ve kategorize etmek için titiz bir matematiksel yöntem olarak geliştirildi. Kabaca konuşursak, bir döngü, kapalı bir alt manifolddur, bir sınır aynı zamanda bir alt manifoldun sınırı olan bir döngüdür ve bir homoloji sınıfı (bir deliği temsil eden), döngü modulo sınırlarının bir denklik sınıfıdır. Dolayısıyla bir homoloji sınıfı, herhangi bir alt manifoldun sınırı olmayan bir döngü ile temsil edilir: Döngü bir deliği, yani sınırı o döngü olacak olan ancak "orada olmayan" varsayımsal bir manifoldu temsil eder.

Birçok farklı homoloji teorisi vardır. Bir topolojik uzay veya bir grup gibi belirli bir matematiksel nesne türü, bir veya daha fazla ilişkili homoloji teorisine sahip olabilir. Ele alınan nesne, topolojik uzaylarda olduğu gibi geometrik bir yoruma sahip olduğunda, nn'inci homoloji grubu, nn boyutundaki davranışı temsil eder. Çoğu homoloji grubu veya modülü, uygun değişmeli kategorilerde türetilmiş işlevciler olarak formüle edilebilir ve bir işlevcinin kesin olmama hatası ölçülür. Bu soyut bakış açısından, homoloji grupları türetilmiş bir kategorinin nesneleri tarafından belirlenir.

Homolojide sıkça kullanılan Mayer–Vietoris Dizisi.
Homolojide sıkça kullanılan Mayer–Vietoris Dizisi.
Wikipedia

Homolojinin Uygulama Alanları

Homoloji kavramı, topolojinin kullanıldığı birçok alanda kendini gösterir.

Bilim ve Mühendislik

Özellikle bilim ve mühendislik alanlarında fazlasıyla kullanılan homolojinin en sık kullanıldığı alanların başında topolojik veri analizi gelir. Topolojik veri analizi (İng: "Topological Data Analysis"), topolojik ve geometrik aletleri kullanarak daha kompleks olan yapıları bulmak ve onları yorumlamak için kullanılan, yeni ve hızla büyüyen bir alandır.[6]

Tüm Reklamları Kapat

Bu analizde veri setleri birer matematik kümesinin nokta bulutu (İng: "Point cloud") örneklemi veya Öklid uzayındaki cebirsel değişimler olarak kabul edilir ve kendilerine en yakın olan verilerle bağlanarak bir veri üçlemesine girerler. Bu üçleme sayesinde verilerin basitleştirilmiş homolojisi hesaplanır.[6]

Topolojik veri analizinde oluşturulmuş veri üçlemesi sayesinde verilerin hesaplanan basitleştirilmiş homolojisinin bulunabilecekleri nokta bulutları.
Topolojik veri analizinde oluşturulmuş veri üçlemesi sayesinde verilerin hesaplanan basitleştirilmiş homolojisinin bulunabilecekleri nokta bulutları.
Wikipedia

Topolojik veri analizinin yanı sıra homoloji; kablosuz sensör ağlarında, fiziğin dinamik sistemler teorisini açıklamada ve mühendislikte sıklıkla kullanılan sonlu elemanlar metodunda (İng: "Finite Element Method") diferansiyel denklemlerle birlikte kullanılır.[7]

Homolojinin bu alanlardaki kullanımı daha çok simülasyon bazlı olsa da özellikle kablosuz sensör ağları gibi insan hayatını direkt olarak etkileyen alanlarda homoloji, hayati bir öneme sahiptir. Örneğin homolojinin kullanıldığı kablosuz sensör sistemleri, hava kalitesinin kontrolü gibi alanlarda aktif olarak kullanılır.[8]

Yazılım

Homolojinin yazılım alanındaki etkisi o kadar büyüktür ki matematikçiler ve bilgisayar uzmanları homolojinin yazılıma etkisini ayrı bir alt başlığa alarak inceler. Birbirinden farklı bir sürü yazılım paketi sadece sonlu hücre komplekslerinin homoloji gruplarını geliştirme amacıyla geliştirilmiştir.

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Homoloji ile ilgili en çeşitli kataloğa sahip olan yazılım programlarından biri de C++ dilidir. LinBox, C++ dilinin homolojiyi ve doğrusal cebiri kullanarak hızlı matriks hesaplamalarını gerçekleştirdiği kütüphanesidir. Dahası bu kütüphane, Gap ve Maple olarak bilinen yazılım programlarıyla bağlantı kurabilme yeteneğine de sahiptir.

Bu dillerin yanı sıra Chomp, CAPD:Redhom ve Perseus isimleriyle başlatılan çalışmalar da C++ dilinde yazılmıştır. Bu üç ön işlemci algoritma da basit homoloji denklemleri ve Ayrık Morse Teorisi (İng: "Discrete Morse Theory") üzerine kurulmuştur. Üçünün de ortak amacı matriks cebirine başvurmadan önce girdi hücre komplekslerinin homolojiyi korumaları için indirgenmelerini gerçekleştirmektir.[9]

Ayrık Morse Teorisinin grafiksel tekrardan yapılandırılması.
Ayrık Morse Teorisinin grafiksel tekrardan yapılandırılması.
ArXiV

Soyut Matematik

Matematik dünyasında topolojinin ve homolojinin hangi matematik alt dalına ait olduklarıyla ilgili hâlâ devam eden bir tartışma vardır. Her ne kadar matematikçilerin büyük bir çoğunluğu topolojinin ve dolaylı yoldan homolojinin sert bir şekilde soyut matematik (İng: "Pure Mathematics") olarak adlandırılmasının gerektiğini dillendirseler de özellikle 21. yüzyılın getirdiği bilimsel ve teknolojik gelişmelerden dolayı topoloji ve homoloji her geçen gün uygulamalı matematikte daha çok kullanılmaktadır.[10]

Matematikçilerin uzun yıllar boyunca üzerinde çalıştığı teoremlerden bir kısmı homoloji sayesinde çözülebilmiştir. Bu teoremlerden bazıları şunlardır:

  • Brouwer Sabit Nokta Teoremi (İng: "The Brouwer Fixed Point Theorem"),
  • Etki Alanının Değişmezliği Teoremi (İng: "Invariance of Domain Theorem"),
  • Saçlı Top Teoremi (İng: "The Hairy Ball Theorem"),
  • Borsuk–Ulam Teoremi (İng: "The Borsuk–Ulam Theorem"),
  • Boyutun Değişmezliği Teoremi (İng: "Invariance of Dimension Theorem").
Boyutun Değişmezliği Teoremi.
Boyutun Değişmezliği Teoremi.
University of Cagliari Mathematics Department

Homolojinin Geleceği

Homolojinin hâlâ genç ve dinamik bir alan olması kendisini son zamanların en çok tartışılan ve araştırılan konularından biri yapıyor. Özellikle bilim insanları hızlı ve yapılandırılmış uyuşturucu keşfi ve GPCR'lerin yapılarını tahmin etmek için yeni bir modelleme sistemi oluşturulması konularına odaklanıyor.

Şu an bile birçok makalenin ve araştırma yazılarının konusu olan Homoloji Modellemesi sayesinde de amino asit dizilerinden proteinlerin 3D yapılarının hesaplamalı bir şekilde belirlenebileceği düşünülüyor.[11] Bu modelleme; ilaç tasarımı, ligand bağlama bölgesi, substrat özgüllüğü ve fonksiyon açıklamaları hakkında hipotezlerin öne sürülmesine ve moleküler biyolojide ciddi ilerlemeler kaydedilmesine yardımcı olabilir.[11]

Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
20
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Merak Uyandırıcı! 3
  • Tebrikler! 2
  • Muhteşem! 1
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 21/11/2024 13:43:00 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/14866

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Keşfet
Akış
İçerikler
Gündem
Eşey
Genler
Evrim Ağacı Duyurusu
Yeşil
Asteroid
Beslenme Bilimi
Kalıtım
Sendrom
Kanser
Dağılım
Ağrı
Nöronlar
Deniz
Sars
Ara Tür
Renk
Embriyo
Tür
Periyodik Tablo
Hukuk
Ortak Ata
Carl Sagan
Evrimsel Tarih
Hayatta Kalma
Kanser Tedavisi
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Kafana takılan neler var?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
A. Nas, et al. Matematiksel Homoloji Nedir? Topolojinin Bir Alt Başlığı Olan Homoloji, Pratik Olarak Hangi Alanlarda Kullanılır?. (27 Haziran 2023). Alındığı Tarih: 21 Kasım 2024. Alındığı Yer: https://evrimagaci.org/s/14866
Nas, A., Alparslan, E. (2023, June 27). Matematiksel Homoloji Nedir? Topolojinin Bir Alt Başlığı Olan Homoloji, Pratik Olarak Hangi Alanlarda Kullanılır?. Evrim Ağacı. Retrieved November 21, 2024. from https://evrimagaci.org/s/14866
A. Nas, et al. “Matematiksel Homoloji Nedir? Topolojinin Bir Alt Başlığı Olan Homoloji, Pratik Olarak Hangi Alanlarda Kullanılır?.” Edited by Eda Alparslan. Evrim Ağacı, 27 Jun. 2023, https://evrimagaci.org/s/14866.
Nas, Adanur. Alparslan, Eda. “Matematiksel Homoloji Nedir? Topolojinin Bir Alt Başlığı Olan Homoloji, Pratik Olarak Hangi Alanlarda Kullanılır?.” Edited by Eda Alparslan. Evrim Ağacı, June 27, 2023. https://evrimagaci.org/s/14866.
ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close