Merhaba, bu konu ile alakalı bir soruya cevap vermiştim onu buraya taşıyorum.
Higgs bozonunu anlamak için, önce Higgs alanı hakkında bilgi sahibi olmalıyız. Bu alan, bazı temel parçacıklara kütlelerini verirken, aynı zamanda doğanın dört temel kuvvetinden ikisini birbirinden ayırır.
Özetle her şey parçacıklardan oluşuyor Fakat evren başladığında, hiçbir parçacığın kütlesi yoktu hepsi ışık hızında hareket ettiler Yıldızlar, gezegenler ve yaşam ancak parçacıkların kütlelerini Higgs bozonuyla ilişkili temel bir alandan kazandıkları için ortaya çıktı. .
Alanın varlığı ilk olarak 1960'ların başında teorize edildi, fizikçiler elektromanyetizma ve zayıf nükleer kuvvetin nasıl ayrıldığını ve neden bazı kuvvet taşıyan parçacıkların W ve Z gibi bozonlara sahip olduğunu, diğerlerinin ise fotonlar gibi olmadığını açıklayacak varsayımsal bir alanın sonuçlarını göz önünde bulundurdular.
Atomlar, kütlelerinin çoğunu, çekirdeklerinin içinde sıkışıp kalan, güçlü kuvvetle birbirine bağlanan kuarklar adı verilen parçacıkların vızıltı enerjilerinden alırlar. Ve kendi başlarına bile, kuarkların kütlesi vardır. Çevredeki elektronlar gibi. İçlerinde 'vızıldayan' hiçbir şey olmadığından, dinlenirken kütlelerine eşit olacak enerjiyi hesaba katmak için bir tür aktiviteye ihtiyaç vardır.
20. yüzyılın ortalarında, fizikçiler bozonlarını tanımlayan önceki modellerin gözlemlerle eşleşmediğini keşfettiler; Zayıf kuvvetin W ve Z bozonları gibi kısa menzilli parçacıklar, tüm protondan 80 kat daha büyüktü, oysa elektromanyetik alanın geniş kapsamlı fotonunun hiçbir kütlesi yoktu.
bigbangden sonra evren genişleyerek soğumaya başladı ve kuvvetler, simetriler parçalara ayrılmaya başladı uzayın her yerinde 0 olmayan bir değere sahip bir alana sahip olmak, kuantum mekaniğinde teoride deneylerle zaten dışlanmış bir tür parçacık üretmesi gereken temel bir dengeyi bozacaktı. Ancak Higgs, Englert ve Brout, bu varsayımsal alanın zayıf kuvvetten sorumlu alanla bağlantılı olması durumunda, kimsenin görmediği zahmetli parçacığın yutulacağını, bazı ağır W ve Z bozonlarına kıyasla ağır, spinsiz, yüksüz bir 'Higgs' bozonu bırakacağını gösterdi.
aynı sürecin hemen hemen her kuantum alanı için işe yarayacağı anlaşıldı 2012 Büyük Hadron Çarpıştırıcısı'nın dedektörlerinden ikisi tarafından böyle bir parçacık tespit edildi ve resmi olarak Higgs bozonunun standart modelde yer almasını sağladı.
Üstte dediğim simetrilerin parçalanma sürecine simetri kırılması denir, bu orijinal simetriyi tam olarak kıracak ve bize standart modeli sunacak bir mekanizmaya ihtiyacımız var higgs bozonuna da ihtiyacımız olduğu yer burasıdır.
bigbang anında 4 temel kuvvetin (yani zayıf ve güçlü nüükler, elektromanyetik ve kütle çekim kuvveti) tamamını ana simetriye uyan tek bir süperkuvvette birlelştiriliyordu ve bu denklemi yöneten denklem de tanrı denklemiydi. Higgs alanını, Higgs bozonu olarak adlandırılan bir gösterge bozonu yani kuvvet taşıyıcısı vardır.
Ancak higgs alanının simetrisi kırılıyordu sonra bu alanın içerisinde baloncuklar oluşmaya başladı, baloncuğun içerisinde bazı parçacıklar kütle kazandı bigbangin ilerlemesiyle bu baloncuk iyice genişledi ve parçacıklar birbirinden farklı kütle kazanmaya başladılar böylece simetri kırıldı.
Kaynaklar
-
Michio Kaku. Tanrı Denklemi.
-
CERN. Higgs Bozon. Alındığı Tarih: 7 Haziran 2023. Alındığı Yer: CERN
| Arşiv Bağlantısı
-
scienealert personelleri. (2021). Higgs Bozonu. .. | Arşiv Bağlantısı