Elektron, negatif (eksi) yüklü atom altı taneciklerden biridir. Serbest halde de olabilirler, bir atoma bağlı halde de. Temel parçacıklardan lepton grubundadırlar. Elektron, 1897 yılında J. J. Thomson tarafından, katot ışınlarının yardımıyla keşfedildi. Bu çalışması nedeniyle 1906 yılında Nobel Ödülü'ne layık görülmüştür.
Elektriği anlamaya çalışan fizikçiler kendilerine iyi düşünülmüş ve biraz da eğlenceli bir deney aleti geliştirdiler. William Crookes tarafından geliştirildiğinden Crookes Tüpü olarak bilinen bu alet, havası boşaltılmış uzun cam bir tüpün içine istenilen gazın düşük basınçta verilmesi ve tüpün iki ucuna yüksek gerilim uygulanmasıyla elde ediliyordu. Tüplü televizyonların çalışma mantığını içeren ve günümüzde kendine ancak laboratuvarlarda yer bulabilen bu alette, uygulanan yüksek gerilim nedeniyle eksi uçtan (katottan) artı uca doğru (anoda) giden ışınlar görülür. Bu ışınlara katot ışınları denir ve bu doğrultuda Crookes Tüpü, zaman zaman katot ışınları tüpü olarak da adlandırılır. Modern televizyonlara giden yol, katot ışın tüpleri sayesinde mümkün olmuştur. Ancak katot ışınlarının doğasını anlamak üzere yapılacak çalışmalar, o zamana dek "bölünemez" zannedilen atom fikrini kökünden sarsacaktı.
1897'de katot ışınlarının doğasını anlamaya çalışan bir fizikçi atoma dair önemli bir keşfe imza attı. İngiliz fizikçi Joseph John Thomson laboratuvarında bir katot ışın tüpü oluşturdu ve beklediği üzere, katottan çıkan ışınlar anoda doğru yöneliyorlardı. Thomson, bu ışınları biraz incelemek istedi ve anotta küçük bir delik açarak karşısına floresan bir ekran koydu. Floresan ekrana çarpan katot ışınları, ekranda küçük noktaların parlamasına neden oluyordu. Bu doğrultuda ışınların parçacıklı yapıda olduklarını anladı.
"Peki elektron neden hareket etti?" diye sorabilirsiniz. Metal parçalara elektrik verildiği için elektronlar harekete geçtiler. Thomson bunu gördü ve merak etti: Harekete sebep olan şey neydi? Tüpün içerisindeki şeyin bir elektrik yükü var mıydı acaba?
Parçacıkların bir elektrik yüke sahip olup olmadığını ortaya çıkarmak için yolları üzerine birbirine paralel iki adet metal levha yerleştirerek ikinci bir pille levhaları zıt olarak yükledi. Böylelikle levhalar arasında bir elektrik alan yaratmış oldu ve eğer katottan çıkıp anota giden ışınlar bir elektrik yüküne sahiplerse, yollarının sapması gerekecekti. Çünkü fizikten bildiğimiz gibi, zıt yükler birbirini çeker.

Deneyini gerçekleştirdiğinde katot ışınlarının yollarının saptığını gördü ve sapma, artı yüklü levha yönünde oluyordu. Zıt yükler birbirini çekeceğinden, katot ışınlarını meydana getiren parçacıkların eksi yüklü olduğu anlaşılıyordu.
Thomson, katot ışınlarının elektrik yüklü olduğunu görmüştü; fakat ona dair daha temel özelliklere sahip olabilmesi için biraz daha bilgiye gereksinim duyuyordu. Amacı, parçacığın karakteristik özelliklerini belirleyebilmekti ve hız bilgisi işine yarayabilirdi. Bu doğrultuda, katottan çıkan ve elektriksel alan dolayısıyla yolundan sapan parçacığın, sapmasına engel olacak ölçüde etkiyecek şekilde bir manyetik alan oluşturdu. Böylelikle parçacık, sanki hiçbir etki altında değilmiş gibi doğrusal olarak gidecekti. Zıt yönde oldukları için parçacığı yolundan saptırmayan elektrik ve manyetik kuvvetlerin büyüklüğünü kullanarak enerji denkliği sayesinde hız bilgisini elde edebilecekti. Daha sonrasında ise kuvvetlerin denkliğiyle de parçacığın yük/kütle değerine ulaşacaktı.
Hesabı ve düşüncesi tamamıyla doğruydu. Bulduğu değer de beklediğine oldukça yakındı; ama bir türlü tam değeri elde edemiyordu. Deneyini farklı şartlar altında özellikle de katot malzemesini ve tüpün içindeki gazı değiştirerek de defalarca tekrarladı fakat sonuç hiç değişmedi. Her seferinde aynı yük/kütle değerine ulaşıyordu. Bu eksi yüklü parçacık, malzeme ne olursa olsun değişmediğine göre temel bir parçacıktı ve Thomson ona "elektron" ismini vermeyi uygun gördü.
Thomson, bu deney ile şu sonuçlara varmıştır:
- Katot ışını, negatif (-) yüklü parçacıklardan oluşmalı.
- Bu parçacıklar mutlaka atomun bir parçası olmalı.
- Farklı metaller kullanılsa bile aynı katot ışınını oluşur.
Thomson'ın bu deneyi ve sonrasındaki temel fizik hesabı atom düşüncesinin önemli bir adımı olarak görülür. Çünkü sonucunda yeni bir atom modeli oluşabilmiştir. Thomson, elektronu keşfetti ve bu keşif elbette Dalton'un bölünemez atomlarına ağır bir darbe vurdu. Deneyde kullandığı malzeme ne olursa olsun sonuç değişmediğinden, Dalton'un savunduğu şekilde her elementin atomları birbirinden tamamıyla farklı olmamalıydı. Her atomda, keşfettiği elektron kendine yer bulabilmeli ve bu elektron, atomunu terk edip tüpün içinde gezebildiğinden, atomun bölünemezliği düşüncesi terk edilmeliydi.
Anlayacağınız elektron, sadece kimya için değil, bütün fen bilimleri için kritik derecede önemlidir. Elektronu anlamak bize daha büyük bir dünyanın kapılarını aralamıştır.
"Elektron, bir teoriden ibarettir. Ancak doğanın nasıl çalıştığını anlamamızı o kadar kolaylaştırır ki, gerçek olduğunu bile söyleyebiliriz!" - Richard Feynman
Öte yandan elektron, eksi yüklü bir parçacıktı; fakat atomlar yüksüzdü. Öyleyse atomun içinde bu yük dengesini sağlayacak artı yükler olmalıydı. Diğer bir tespitse, elektronun yük/kütle oranının çok yüksek olmasıydı. Bu elektronun kütlece çok küçük olduğu anlamına geliyordu.
Kaynaklar
- Ç. M. Bakırcı, et al. Elektron, Proton Ve Nötron Nasıl Keşfedildi?. (10 Şubat 2017). Alındığı Yer: Evrim Ağacı | Arşiv Bağlantısı