Keşfedin, Öğrenin ve Paylaşın
Evrim Ağacı'nda Aradığın Her Şeye Ulaşabilirsin!
Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Dirac Delta Fonksiyonu

4 dakika
2,933
Dirac Delta Fonksiyonu
  • Özgün
Tüm Reklamları Kapat

Dirac delta fonksiyonu, genelleştirilmiş fonksiyon veya dağılımdır ve İngiliz teorik fizikçi Paul Dirac tarafından sunulmuştur. Delta fonksiyonu δ(x); x=0 hariç her yerde değeri sıfır olan, fakat x=0'da sonsuz büyüklüğe sahip olan ve toplam integrali 1'e eşit olan fonksiyondur. Bu fonksiyon, impuls gibi uzun ve dar atımlar gösteren fonksiyonlar için iyi bir yaklaşım sağlar.

Neden Dirac Delta Fonksiyonuna İhtiyaç Duyuyoruz?

Bu durumu öncelikle konsept olarak anlamak adına, basit bir örnekle incelemeye başlayalım. Örneğin, x=0'da noktasal bir q yükümüz bulunsun. Bu yük için yük yoğunluğunu ρ(?)'i nasıl tanımlarız? Bütün yükün x=0 noktasında bulunduğunu biliyoruz. Ancak bunu matematiksel olarak nasıl gösterebiliriz? İşte Dirac delta fonksiyonu bize tam olarak bu noktada yardım etmektedir.

Şimdi, bu örneği matematiksel olarak ifade etmek için, bir vektör fonksiyonu (V) tanımlayalım.

Tüm Reklamları Kapat

Aslında, bu ifade bir noktasal yükün elektrik alanıyla oldukça benzerdir. Eğer hayal edecek olursanız, bu vektör fonksiyonunun, merkezden dışarı doğru küresel olarak saçıldığını anlayabilirsiniz. Matematik dilinde saçılmak demek diverjans demektir. Öyleyse, küresel koordinatlarda bu ifadenin diverjansını alalım ve ne buluyoruz inceleyelim. Diverjans ifademiz aşağıdaki gibiydi.

Küresel koordinatlarda diverjans ifadesini ise şu şekilde yazabiliriz:

Şimdi, vektör fonksiyonumuzu yerine yazalım.

Cevap sıfır! "Dışarı doğru saçılan bir fonksiyonun diverjansı nasıl sıfır olabilir ki?" diye sorabilirsiniz. Bu soruya cevap vermeden önce başka bir şey daha deneyelim. Sonuçta diverjans teoremimizin doğru olduğunu biliyoruz. Öyleyse, bir de o teoremi kullanalım ve bakalım diğer taraf da bize sıfır mı veriyor.

Tüm Reklamları Kapat

Diverjans ya da Gauss teoremine göre, önce bir kapalı yüzey tanımlamamız gerekiyor. Bu yüzeyi, yarıçapı R olan ve merkezi (0,0,0) noktasında olan bir küre olarak tanımlayalım. Öyleyse:

Şimdi de 4π çıktı! Hani Gauss (diverjans) teoremi doğruydu? Biz mi bir yerlerde hata yapıyoruz? Yoksa Gauss teoremi mi yanlış? Nedir bu olan?

Olan şey aslında çok basit. Vektör fonksiyonumuz, r=0 olduğunda sonsuza gidiyor. Bütün karışıklığın sebebi de bu nokta. Eğer ki, diverjansımızı r=0 noktası dışında bir noktada hesaplasaydık, bulacağımız cevap kesinlikle 0 olmalıydı. Çünkü oluşturacağımız hacimin içerisinde bir kaynak olmayacaktı. Hesaplayacağımız yüzey integraline bakacak olursak da, oluşturduğumuz kürenin yarıcapı R ne olursa olsun, çıkan sonucun 4π olacağını görebiliriz. Öyleyse, bu iki sonucu birleştirecek olursak:

V, r=0 noktası hariç her yerde sıfır olmakta. Yüzey integralinden de görebileceğimiz gibi, sonucu r=0'dan gelen katkıyla 4π olmakta.

Evrim Ağacı'ndan Mesaj

Evrim Ağacı'nın çalışmalarına Kreosus, Patreon veya YouTube üzerinden maddi destekte bulunarak hem Türkiye'de bilim anlatıcılığının gelişmesine katkı sağlayabilirsiniz, hem de site ve uygulamamızı reklamsız olarak deneyimleyebilirsiniz. Reklamsız deneyim, sitemizin/uygulamamızın çeşitli kısımlarda gösterilen Google reklamlarını ve destek çağrılarını görmediğiniz, %100 reklamsız ve çok daha temiz bir site deneyimi sunmaktadır.

Kreosus

Kreosus'ta her 50₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24-72 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Dirac Delta Fonksiyonu

?(x) ile ifade edilen Dirac delta fonksiyonu, aşağıdaki gibi tanımlanabilir:

Görsel olarak ifade edecek olursak:

Görselde gördüğümüz sivri yapının alanı 1 olarak tanımlanmıştır. Bu yüzden, -∞ ile +∞ arasında tanımlanan bir integralin sonucu da 1 olmak zorundadır. Yani:

Şimdi, bu ifadenin nasıl kullanıldığını açıklamak adına, f(x) fonksiyonunun ?(x) ile çarpımına bakalım. ?(x), x=0 haricinde 0 sonucunu vereceği için, çarpımı şu şekilde ifade edebiliriz:

Eğer Kronecker delta ya da Levi-Civita sembolu ile daha önceden tanışmışsanız, Dirac delta fonksiyonunun bu ikisiyle olan benzerliğini görebilirsiniz. Şimdi konudan sapmadan, yukarıdaki çarpımın integralini tanımlayalım:

f(0) sabit olduğundan, diyebiliriz ki:

Tüm Reklamları Kapat

Eşitliğin sağ tarafındaki integrali yukarıda tanımlamıştık. Öyleyse:

olmuş olur. Yani, aslında ?(x), fonksiyonun x=0'daki değerini, integralden "çekip" alır. Her ne kadar vektör fonksiyonu örneğimiz x=0 noktasında sonsuza gitse de, her durumda fonksiyonun sonsuza gittigi nokta x=0 olmak zorunda değil. Örneğin, x=a noktasında fonksiyon sonsuza gitsin. Ya da, keyfimiz gereği, fonksiyonun x=a noktasındaki değerini seçmek isteyelim. Öyleyse, x=a gibi bir noktada da Dirac delta fonksiyonunu tanımlamalıyız.

Kullandığımız mantık oldukça basit. ?(x), sadece içerisi 0 olduğunda 1 sonucunu vermekte. Öyleyse, içerisini x=a noktasında 0 yaparsak, x=a noktasında da Dirac delta fonksiyonunu kullanmış oluruz.

Tüm Reklamları Kapat

Benzer sekilde, x=a noktasında sıçrama yapan fonksiyonumuzun tüm uzaydaki integralinin sonucu 1'i verecektir.

Dirac delta fonksiyonu, x=a noktasındaki değeri seçeceğinden:

Haline gelir. Bu ifadenin integralini alırsak, yukarıdaki sonuca benzer olarak:

Elde etmiş oluruz. Bu sayede, herhangi bir a noktasında da Dirac delta fonksiyonunu kullanarak, integralden f(a)'yı seçmeyi başardık. Benzer şekilde, üç boyutta da dirac delta kullanılabilir.

Tüm Reklamları Kapat

Agora Bilim Pazarı
T. rex

Bu Dev Vahşi Canlılar Geç Kretase döneminde(68-66 milyon yıl önce) dünya’da yaşadılar ve fosil kalıntıları 1902 yılında Hell Creek, Montana’da bulundu.

Düzinelerce keskin, parçalayıcı dişlerle donanmış ve toplam uzunluğu ortalama 12 metre olan bu Teropod cinsi dinozor şu ana kadar bilinen dünya’da yaşamış en güçlü canlı varlıktır.

Müze ve bilimsel araştırma kalitesinde, yetişkin bir T-Rex fosilinin kafatası baz alınıp benzer ölçülerde kil kullanılarak tasarlanan heykel çalışmasıdır.

Ürün Boyutları: 26cm x 14cm x 24cm
Ahşap Kaide ile birlikte yüksekliği 28cm’dir.

%100 El Yapımıdır. Yetişkin bir T-Rex fosilinin ölçüleri baz alınarak tasarlanmıştır.Polyester, resin ve plastik kullanılmadan üretilmiştir.

Malzeme:Kil,Siyah Ahşap Kaide
Ürün Boyutları: 26cm x 14cm x 24cm

Devamını Göster
₺5,000.00
T. rex

Dirac Delta Fonksiyonu ve Vektör Potansiyeli Örneği

İntegralimizin sonucunun 4π olduğunu söylemiştik. Öyleyse,

ifadesini şöyle tanımlayabiliriz:

r vektörü 3 boyutta tanımlandığı icin için, 3 boyutta Dirac delta kullanmamız gerekiyor. 3 boyutta Dirac delta, "?³(r)" şeklinde ifade edilmekte. Yani ifade, fonksiyonun yalnizca (0,0,0) noktasındaki değerini 4π olarak vermekte. Geri kalan her yerde de 0 sonucunu vermekte.


Hazırlayan:Ege Can Karanfil
Editör: Ögetay Kayalı

Referanslar
1. David J. Griffiths, Introduction to Electrodynamics, 4th edition, Pearson
2. David J. Griffiths, Introduction to Quantum Mechanics, 2nd edition
3. Prof. Dr. Gürsevil TURAN, Quantum Physics ders notları
4. Wolfram, Delta Function, <https://mathworld.wolfram.com/DeltaFunction.html>
5. Science Direct, <https://www.sciencedirect.com/topics/engineering/dirac-delta-function>
Figürler
1. David J. Griffiths, Introduction to Electrodynamics, 4th edition, syf. 46
2. David J. Griffiths, Introduction to Electrodynamics, 4th edition, syf. 47

 

Evrim Ağacı, sizlerin sayesinde bağımsız bir bilim iletişim platformu olmaya devam edecek!

Evrim Ağacı'nda tek bir hedefimiz var: Bilimsel gerçekleri en doğru, tarafsız ve kolay anlaşılır şekilde Türkiye'ye ulaştırmak. Ancak tahmin edebileceğiniz gibi Türkiye'de bilim anlatmak hiç kolay bir iş değil; hele ki bir yandan ekonomik bir hayatta kalma mücadelesi verirken...

O nedenle sizin desteklerinize ihtiyacımız var. Eğer yazılarımızı okuyanların %1'i bize bütçesinin elverdiği kadar destek olmayı seçseydi, bir daha tek bir reklam göstermeden Evrim Ağacı'nın bütün bilim iletişimi faaliyetlerini sürdürebilirdik. Bir düşünün: sadece %1'i...

O %1'i inşa etmemize yardım eder misiniz? Evrim Ağacı Premium üyesi olarak, ekibimizin size ve Türkiye'ye bilimi daha etkili ve profesyonel bir şekilde ulaştırmamızı mümkün kılmış olacaksınız. Ayrıca size olan minnetimizin bir ifadesi olarak, çok sayıda ayrıcalığa erişim sağlayacaksınız.

Avantajlarımız
"Maddi Destekçi" Rozeti
Reklamsız Deneyim
%10 Daha Fazla UP Kazanımı
Özel İçeriklere Erişim
+5 Quiz Oluşturma Hakkı
Özel Profil Görünümü
+1 İçerik Boostlama Hakkı
ve Daha Fazlası İçin...
Aylık
Tek Sefer
Destek Ol
₺50/Aylık
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
0
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

Makalelerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu makalemizle ilgili merak ettiğin bir şey mi var? Buraya tıklayarak sorabilirsin.

Soru & Cevap Platformuna Git
Bu Makale Sana Ne Hissettirdi?
  • Muhteşem! 0
  • Tebrikler! 0
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 26/04/2025 08:09:24 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/12748

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Gündem
Bağlantı
Ekle
Soru Sor
Stiller
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Aklınızdan geçenlerin bu platformda bulunmuyor olabilecek kişilere cevap hakkı doğurmadığından emin olun.
Size Özel
Makaleler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
E. C. Karanfil, et al. Dirac Delta Fonksiyonu. (1 Ağustos 2020). Alındığı Tarih: 26 Nisan 2025. Alındığı Yer: https://evrimagaci.org/s/12748
Karanfil, E. C., Kayalı, Ö. (2020, August 01). Dirac Delta Fonksiyonu. Evrim Ağacı. Retrieved April 26, 2025. from https://evrimagaci.org/s/12748
E. C. Karanfil, et al. “Dirac Delta Fonksiyonu.” Edited by Ögetay Kayalı. Evrim Ağacı, 01 Aug. 2020, https://evrimagaci.org/s/12748.
Karanfil, Ege Can. Kayalı, Ögetay. “Dirac Delta Fonksiyonu.” Edited by Ögetay Kayalı. Evrim Ağacı, August 01, 2020. https://evrimagaci.org/s/12748.

Bize Ulaşın

ve seni takip ediyor

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close