Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Kuantum Mekaniği: Lineer Bağımlılık ve Lineer Bağımsızlık

Kuantum Mekaniği: Lineer Bağımlılık ve Lineer Bağımsızlık
5 dakika
281

Kuantum mekaniğinin dilinde lineer cebirin öneminden bahsetmiştik. Lineer cebirde de bizim için en önemli konulardan biri lineer bağımlılık ve lineer bağımsızlıktır. Bazen "iki vektör birbirinden lineer bağımsız olmalı" deriz, peki bununla neyi ima etmek isteriz?

Diyelim ki iki tane birbirine paralel olmayan |V> ve |W> vektörlerimiz olsun. Bunları toplarsak |V> + |W> şeklinde başka bir vektör elde ederiz. Peki bunları a ve b gibi herhangi iki reel skalerle çarparsak ne olur? Bunu önce matematiksel olarak ifade edelim.

Tüm Reklamları Kapat

a|V>+b|W>

Buna |V> ve |W> vektörlerinin lineer kombinasyonları diyeceğiz.Burada a ve b herhangi bir reel sayı, dolayısıyla burada tüm reel sayıları kapsayan çeşitli kombinasyonlarda |V> ve |W> vektörlerini yeniden ölçeklendiriyor (negatifse tersi yönde çevirerek ölçeklendiriyor) ve toplayarak başka bir vektör elde ediyoruz. Sonuç olarak elimizde sadece bu iki vektörün ve bu iki keyfi skalerin tanımladığı bir vektörler kümesi oluyor. Buna germe (span) adını veriyoruz. Fazla tanımlama yaptık ve biraz soyut kaldı, biliyorum. O nedenle anlattığımızı görselleştirmeye çalışalım.

Tüm Reklamları Kapat

Figür 1: Lineer cebirde germe (span).
Figür 1: Lineer cebirde germe (span).

Sezgisel olarak da anlayacağımız üzere bu iki vektörün ilgili lineer kombinasyonuyla aynı düzlemde yer alan diğer vektörlerden herhangi birini tanımlayabiliriz. Dolayısıyla 2 boyutlu uzayda yer alan çoğu vektörün germesi, 2 boyutlu bir uzaydaki tüm vektörlerdir. Burada çoğu dediğimize dikkat edin, çünkü başta bir kabul yapmıştık. Bu iki vektör birbirine paralel olmayacaktı. Peki paralel olursa ne olur?

İki vektörün birbirine paralel olması durumunda, bunların lineer kombinasyonları yine aynı doğrultu üzerinde yer alır. Bu sefer 2 boyutlu bir uzay söz konusu değildir, daha kaba bir tabirle, tüm kombinasyonları düşünecek olsak dahi, 2 boyutlu düzlemi oluşturacak bir vektör kümesi ortaya çıkmaz. Çok daha kaba bir tabirle bu iki vektör aynı doğru üzerinde yer alırlar. Dolayısıyla bunların lineer kombinasyonları sadece bu doğru parçasının uzunluğunu değiştirir.

Üç Boyutta Vektörlerin Germesi (Spanı)

Az önce sadece iki vektörden bahsettik, peki bu iki vektör üç boyutta yer alırsa bunların germesi ne olur? Sezgisel olarak bunun yine bir düzlem olacağını ve bu düzlemin hangi düzlem olacağının da bu vektörlere bağlı olacağını hemen söyleyebilirsiniz. Peki üç boyutlu bir uzayda üç vektörün germesi hakkında ne söyleyebiliriz? Bunun cevabını sezgisel olarak bulmak için iki tanesiyle bir düzlem oluşturduğunuzu ve üçüncünün kombinasyonuyla da bu düzlemi uzayda (ileri-geri) tarattığınızı düşünebilirsiniz. Yani aslında bu, uzayın tamamını ifade edecektir. Fakat bu üç vektörden birisi diğerine paralelse, yine bir düzlemle kısıtlanırız. Hepsinin birbirine paralel olması durumunda da yine tek boyuta düşer.

Evrim Ağacı'ndan Mesaj

Figür 2: 3 boyutlu uzayda iki vektörün germesi bir düzlemdir. Buraya eklenecek üçüncü ve diğerlerine paralel olmayan bir vektörün lineer kombinasyonları bu düzlemi ileri geri öteleyerek 3 boyutlu uzayın tamamını taratır.
Figür 2: 3 boyutlu uzayda iki vektörün germesi bir düzlemdir. Buraya eklenecek üçüncü ve diğerlerine paralel olmayan bir vektörün lineer kombinasyonları bu düzlemi ileri geri öteleyerek 3 boyutlu uzayın tamamını taratır.

Şimdi tüm bunlar ne anlama geliyor? Tahmin edeceğiniz üzere aslında birbirine paralel olan veya olmayan vektörlerin, lineer kombinasyonlarının verdiği sonuçların farkını inceliyor ve bir tanımlama yapmaya çalışıyoruz. Örneğin eğer üçüncü vektörün eklenmesi germeye bir katkı yapıp, onu bir düzlemden üç boyutlu uzayın tamamına taşımıyorsa, bu üçüncü vektörün, diğer iki vektörden birine lineer bağımlı olduğunu söyleriz.

Dolayısıyla özet olarak, eğer her bir vektör, germenin boyutunu artırıyorsa, bu vektörler lineer bağımsızdır. Fakat eğer bir vektör toplama eklendiği halde germenin boyutunu artırmıyorsa, bu vektör diğerlerinden birinin lineer kombinasyonu olarak ifade edilebilir, dolayısıyla lineer bağımlıdır.

Bir başka deyişle lineer bağımlı olan vektör, zaten diğer vektörlerin oluşturduğu germenin içerisinde yer alır.

Bir vektör uzayının bazı (basis) ise, uzayın tamamını geren lineer bağımsız vektörler kümesidir. Bunun sıkça üzerinde şapka olan i ve j ile gösterildiğini görebilirsiniz, fakat elbette ki herhangi bir harfle ifade edilebilir. Üzerinde şapka olması durumunda genel olarak onların birer baz vektör olduğunu ifade ederiz.

Lineer Bağımlılık ve Lineer Bağımsızlık Bağımlılık

Yukarıdaki sezgisel açıklamalarımızı sindirdiğimize göre, lineer bağımsızlığı aşağıdaki şekilde tanımlayabiliriz.

Tüm Reklamları Kapat

Eğer yukarıdaki ilişkide ai=0 bayağı çözümü tek çözümse, bu vektörler lineer bağımsızdır. Eğer değilse, lineer bağımlıdır. Buradaki |v> vektörünü n adet lineer bağımsız baz vektörleri cinsinden yazabiliriz.

Burada |i> vektörleri baz oluşturur. Aslında şu anda matematiksel olarak gösterdiklerimiz, bir daha önce anlattıklarımızın sadece denklemlere dökülmüş halidir. Burada vi bir skalerdir ve baz vektörü olan i ile çarptığımızda (n-boyutlu uzayda her i için n kere) bize toplamda v vektörünü verir. vi skalerlerine ilgili vektörün bileşenleri de denir.

Örneğin x, y ve z baz vektörleri için bu üç boyutta yer alan bir vektörü 3x+2y+5z şeklinde ifade edebiliriz. Burada v1=3, v2=2 ve v3=5'tir. |1>=x, |2>=y ve |3>=z şeklinde ifade ettiğimize dikkat edin. Eğer bunlar kafa karıştırıcı geliyorsa toplamları açarak yazıp görmeniz yardımcı olacaktır. Kabaca yukarıdaki toplamı 3 boyutlu uzay için şu şekilde açabiliriz: |v>=v1|1>+v2|2>+v3|3>. Burada v1, v2 ve v3 ilgili baz vektörlerinin bileşenleridir.

Aşağıdaki dört boyutlu örneği ele alalım.

Tüm Reklamları Kapat

Bu dört vektör birbirinden lineer bağımsızdır. Ya da bir başka deyişle birini diğerlerinin lineer kombinasyonları şeklinde ifade etmek mümkün değildir. Bu sayede herhangi bir 2x2 matrisi bu dört vektörün lineer kombinasyonu şeklinde ifade edebiliriz.

Daha basit bir ifadeyle a, b, c ve d'yi keyfi olarak değiştirerek tüm 2x2 matrisleri yazmak mümkündür. Eğer burada a, b, c ve d reel sayılardan oluşuyorsa buna reel dört boyutlu bir uzay, eğer kompleks sayılardan oluşuyorsa kompleks dört boyutlu uzay deriz.

Bu noktada şuna dikkat çekmek gerek, bu matrislerin sıfırlardan ve birlerden oluşması bir zorunluluk değil. Örneğin birinci matristeki bir sayısı yerine 2 olsaydı da bunlar yine lineer bağımsız olacaktı. Çünkü diğer matrislerin birinci satır, birinci sütunda sadece sıfır var. Dolayısıyla bunu diğerleri cinsinden, bazı skalerlerle çarparak elde etmek mümkün değil.

Tüm bu kavramları daha iyi anlamak için muhakkak referanstaki 3Blue1Brown animasyonlu anlatımına göz atmanızı öneriyoruz. Listedeki bütün lineer cebir videoları, bu konuları anlamanıza çok yardımcı olacaktır.

Tüm Reklamları Kapat

Agora Bilim Pazarı
Zamanı Durdurmanın Yolları

Tom Hazard’ın tehlikeli bir sırrı var. 41 yaşında sıradan bir tarih öğretmeni gibi görünse de nadir rastlanan bir hastalık yüzünden aslında yüzyıllardır hayatta. Shakespeare’le aynı sahnede yer almış, Kaptan Cook’la açık denizleri fethetmiş, Fitzgerald’larla içki içmiş. Ama şimdi, tek istediği normal bir hayat sürmek. Kimliğini değiştirmeye devam ettiği sürece geçmişini geride bırakabilir ve hayatta kalabilir.

Yapmaması gereken tek bir şey var, âşık olmak.

İngiltere’nin en önemli yazarlarından Matt Haig’in büyükövgü toplayan, 37 dile çevrilen ve yakında Benedict Cumberbatch tarafından sinemaya aktarılacak kitabı Zamanı Durdurmanın Yolları, insanın kendini kaybedip tekrar bulmasına dair güzel bir roman.
“Matt Haig insan doğasının aydınlık ve karanlık tarafına aynı ölçüde hâkim. Ve bu yetisini harika öyküler yaratmak için kullanıyor.”-NEIL GAIMAN
“Matt Haig yüreğimizi dokuyor. Bu kitabın gücüne karşı koymak zor.”-GUARDIAN
“Olağanüstü bir kitap.-STEPHEN FRY
“Bu yılın ve nice yılların en iyi kitabı. Baş döndüren bir okuma. Zaman durdu…”-DANNY WALLACE

Devamını Göster
₺78.00
Zamanı Durdurmanın Yolları


Hazırlayan: Ögetay Kayalı

Referanslar

1. R. Shankar, Principles of Quantum Mechanics, "Mathematical Introduction"

2. 3Blue1Brown, Essence of Linear Algebra, "Linear combinations, span, and basis vectors", <https://youtu.be/k7RM-ot2NWY?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab>

Alıntı Yap
Okundu Olarak İşaretle
0
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Muhteşem! 0
  • Tebrikler! 0
  • Bilim Budur! 0
  • Mmm... Çok sapyoseksüel! 0
  • Güldürdü 0
  • İnanılmaz 0
  • Umut Verici! 0
  • Merak Uyandırıcı! 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 02/12/2022 11:55:48 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/13014

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Size Özel (Beta)
İçerikler
Sosyal
Kişilik
Biliş
Abiyogenez
Kas
Kuantum Fiziği
Hukuk
Doğa
Beyaz
Ses
Komplo
Kimyasal
Şempanzeler
Kimya
Öğrenme Teorileri
Balık
Şempanze
Bakteri
İklim Değişikliği
Element
Evrimsel Biyoloji
Yeşil
Felsefe
Antropoloji
Tercih
İspat
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Bugün bilimseverlerle ne paylaşmak istersin?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Gönder
Ekle
Soru Sor
Daha Fazla İçerik Göster
Evrim Ağacı'na Destek Ol
Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katmak için hemen buraya tıklayın.
Popüler Yazılar
30 gün
90 gün
1 yıl
EA Akademi
Evrim Ağacı Akademi (ya da kısaca EA Akademi), 2010 yılından beri ürettiğimiz makalelerden oluşan ve kendi kendinizi bilimin çeşitli dallarında eğitebileceğiniz bir çevirim içi eğitim girişimi! Evrim Ağacı Akademi'yi buraya tıklayarak görebilirsiniz. Daha fazla bilgi için buraya tıklayın.
Etkinlik & İlan
Bilim ile ilgili bir etkinlik mi düzenliyorsunuz? Yoksa bilim insanlarını veya bilimseverleri ilgilendiren bir iş, staj, çalıştay, makale çağrısı vb. bir duyurunuz mu var? Etkinlik & İlan Platformumuzda paylaşın, milyonlarca bilimsevere ulaşsın.
Podcast
Evrim Ağacı'nın birçok içeriğinin profesyonel ses sanatçıları tarafından seslendirildiğini biliyor muydunuz? Bunların hepsini Podcast Platformumuzda dinleyebilirsiniz. Ayrıca Spotify, iTunes, Google Podcast ve YouTube bağlantılarını da bir arada bulabilirsiniz.
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Alıntı Yap
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Ö. Kayalı. Kuantum Mekaniği: Lineer Bağımlılık ve Lineer Bağımsızlık. (30 Ekim 2021). Alındığı Tarih: 2 Aralık 2022. Alındığı Yer: https://evrimagaci.org/s/13014
Kayalı, Ö. (2021, October 30). Kuantum Mekaniği: Lineer Bağımlılık ve Lineer Bağımsızlık. Evrim Ağacı. Retrieved December 02, 2022. from https://evrimagaci.org/s/13014
Ö. Kayalı. “Kuantum Mekaniği: Lineer Bağımlılık ve Lineer Bağımsızlık.” Edited by Ögetay Kayalı. Evrim Ağacı, 30 Oct. 2021, https://evrimagaci.org/s/13014.
Kayalı, Ögetay. “Kuantum Mekaniği: Lineer Bağımlılık ve Lineer Bağımsızlık.” Edited by Ögetay Kayalı. Evrim Ağacı, October 30, 2021. https://evrimagaci.org/s/13014.

Göster

Şifremi unuttum Üyelik Aktivasyonu

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close
Geri Bildirim Gönder
Paylaş
Reklamsız Deneyim

Evrim Ağacı'ndaki reklamları, bütçenize uygun bir şekilde, kendi seçtiğiniz bir süre boyunca kapatabilirsiniz. Tek yapmanız gereken, kaç ay boyunca kapatmak istediğinizi aşağıdaki kutuya girip tek seferlik ödemenizi tamamlamak:

10₺/ay
x
ay
= 30
3 Aylık Reklamsız Deneyimi Başlat
Evrim Ağacı'nda ücretsiz üyelik oluşturan ve sitemizi üye girişi yaparak kullanan kullanıcılarımızdaki reklamların %50 daha az olduğunu, Kreosus/Patreon/YouTube destekçilerimizinse sitemizi tamamen reklamsız kullanabildiğini biliyor muydunuz? Size uygun seçeneği aşağıdan seçebilirsiniz:
Evrim Ağacı Destekçilerine Katıl
Zaten Kreosus/Patreon/Youtube Destekçisiyim
Reklamsız Deneyim
Kreosus

Kreosus'ta her 10₺'lik destek, 1 aylık reklamsız deneyime karşılık geliyor. Bu sayede, tek seferlik destekçilerimiz de, aylık destekçilerimiz de toplam destekleriyle doğru orantılı bir süre boyunca reklamsız deneyim elde edebiliyorlar.

Kreosus destekçilerimizin reklamsız deneyimi, destek olmaya başladıkları anda devreye girmektedir ve ek bir işleme gerek yoktur.

Patreon

Patreon destekçilerimiz, destek miktarından bağımsız olarak, Evrim Ağacı'na destek oldukları süre boyunca reklamsız deneyime erişmeyi sürdürebiliyorlar.

Patreon destekçilerimizin Patreon ile ilişkili e-posta hesapları, Evrim Ağacı'ndaki üyelik e-postaları ile birebir aynı olmalıdır. Patreon destekçilerimizin reklamsız deneyiminin devreye girmesi 24 saat alabilmektedir.

YouTube

YouTube destekçilerimizin hepsi otomatik olarak reklamsız deneyime şimdilik erişemiyorlar ve şu anda, YouTube üzerinden her destek seviyesine reklamsız deneyim ayrıcalığını sunamamaktayız. YouTube Destek Sistemi üzerinde sunulan farklı seviyelerin açıklamalarını okuyarak, hangi ayrıcalıklara erişebileceğinizi öğrenebilirsiniz.

Eğer seçtiğiniz seviye reklamsız deneyim ayrıcalığı sunuyorsa, destek olduktan sonra YouTube tarafından gösterilecek olan bağlantıdaki formu doldurarak reklamsız deneyime erişebilirsiniz. YouTube destekçilerimizin reklamsız deneyiminin devreye girmesi, formu doldurduktan sonra 24 saat alabilmektedir.

Diğer Platformlar

Bu 3 platform haricinde destek olan destekçilerimize ne yazık ki reklamsız deneyim ayrıcalığını sunamamaktayız. Destekleriniz sayesinde sistemlerimizi geliştirmeyi sürdürüyoruz ve umuyoruz bu ayrıcalıkları zamanla genişletebileceğiz.

Giriş yapmayı unutmayın!

Reklamsız deneyim için, maddi desteğiniz ile ilişkilendirilmiş olan Evrim Ağacı hesabınıza yapmanız gerekmektedir. Giriş yapmadığınız takdirde reklamları görmeye devam edeceksinizdir.

Destek Ol

Devamını Oku
Evrim Ağacı Uygulamasını
İndir
Chromium Tabanlı Mobil Tarayıcılar (Chrome, Edge, Brave vb.)
İlk birkaç girişinizde zaten tarayıcınız size uygulamamızı indirmeyi önerecek. Önerideki tuşa tıklayarak uygulamamızı kurabilirsiniz. Bu öneriyi, yukarıdaki videoda görebilirsiniz. Eğer bu öneri artık gözükmüyorsa, Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Chromium Tabanlı Masaüstü Tarayıcılar (Chrome, Edge, Brave vb.)
Yeni uygulamamızı kurmak için tarayıcı çubuğundaki kurulum tuşuna tıklayın. "Yükle" (Install) tuşuna basarak kurulumu tamamlayın. Dilerseniz, Evrim Ağacı İleri Web Uygulaması'nı görev çubuğunuza sabitleyin. Uygulama logosuna sağ tıklayıp, "Görev Çubuğuna Sabitle" seçeneğine tıklayabilirsiniz. Eğer bu seçenek gözükmüyorsa, tarayıcının Ayarlar/Seçenekler (⋮) ikonuna tıklayıp, Uygulamayı Yükle seçeneğini kullanabilirsiniz.
Safari Mobil Uygulama
Sırasıyla Paylaş -> Ana Ekrana Ekle -> Ekle tuşlarına basarak yeni mobil uygulamamızı kurabilirsiniz. Bu basamakları görmek için yukarıdaki videoyu izleyebilirsiniz.

Daha fazla bilgi almak için tıklayın

Önizleme
Görseli Kaydet
Sıfırla
Vazgeç
Ara
Raporla

Raporlama sisteminin amacı, platformu uygunsuz biçimde kullananların önüne geçmektir. Lütfen bir içeriği, sadece düşük kaliteli olduğunu veya soruya cevap olmadığını düşündüğünüz raporlamayınız; bu raporlar kabul edilmeyecektir. Bunun yerine daha kaliteli cevapları kendiniz girmeye çalışın veya diğer kullanıcıları oylama, teşekkür ve en iyi cevap araçları ile daha kaliteli cevaplara teşvik edin. Kalitesiz bulduğunuz içerikleri eleyebileceğiniz, kalitelileri daha ön plana çıkarabileceğiniz yeni araçlar geliştirmekteyiz.

Soru Sor
Aşağıdaki "Soru" kutusunu sadece soru sormak için kullanınız. Bu kutuya soru formatında olmayan hiçbir cümle girmeyiniz. Sorunuzla ilgili ek bilgiler vermek isterseniz, "Açıklama" kısmına girebilirsiniz. Soru kısmının soru cümlesi haricindeki kullanımları sorunuzun silinmesine ve UP kaybetmenize neden olabilir.
Görsel Ekle
Kurallar
Platform Kuralları
Bu platform, aklınıza takılan soruları sorabilmeniz ve diğerlerinin sorularını yanıtlayabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Gerçekten soru sorun, imâdan ve yüklü sorulardan kaçının.
Sorularınızın amacı nesnel olarak gerçeği öğrenmek veya fikir almak olmalıdır. Şahsi kanaatinizle ilgili mesaj vermek için kullanmayın; yüklü soru sormayın.
2
Bilim kimliğinizi kullanın.
Evrim Ağacı bir bilim platformudur. Dolayısıyla sorular ve cevaplar, bilimsel perspektifi yansıtmalıdır. Geçerli bilimsel kaynaklarla doğrulanamayan bilgiler veya reklamlar silinebilir.
3
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Sahtebilimi desteklemek yasaktır.
Sahtebilim kategorisi altında konuyla ilgili sorular sorabilirsiniz; ancak bilimsel geçerliliği bulunmayan sahtebilim konularını destekleyen sorular veya cevaplar paylaşmayın.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Soru Ara
Aradığınız soruyu bulamadıysanız buraya tıklayarak sorabilirsiniz.
Alıntı Ekle
Eser Ekle
Kurallar
Komünite Kuralları
Bu komünite, fark edildiğinde ufku genişleten tespitler içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Formu olabildiğince eksiksiz doldurun.
Girdiğiniz sözün/alıntının kaynağı ne kadar açıksa o kadar iyi. Açıklama kısmına kitabın sayfa sayısını veya filmin saat/dakika/saniye bilgisini girebilirsiniz.
2
Anonimden kaçının.
Bazı sözler/alıntılar anonim olabilir. Fakat sözün anonimliğini doğrulamaksızın, bilmediğiniz her söze/alıntıya anonim yazmayın. Bu tür girdiler silinebilir.
3
Kaynağı araştırın ve sorgulayın.
Sayısız söz/alıntı, gerçekte o sözü hiçbir zaman söylememiş/yazmamış kişilere, hatalı bir şekilde atfediliyor. Paylaşımınızın site geneline yayılabilmesi için kaliteli kaynaklar kullanın ve kaynaklarınızı sorgulayın.
4
Ofansif ve entelektüel düşünceden uzak sözler yasaktır.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Sözlerinizi tırnak (") içine almayın.
Sistemimiz formatı otomatik olarak ayarlayacaktır.
Gönder
Tavsiye Et
Aşağıdaki kutuya, [ESER ADI] isimli [KİTABI/FİLMİ] neden tavsiye ettiğini girebilirsin. Ne kadar detaylı ve kapsamlı bir analiz yaparsan, bu eseri [OKUMAK/İZLEMEK] isteyenleri o kadar doğru ve fazla bilgilendirmiş olacaksın. Tavsiyenin sadece negatif içerikte olamayacağını, eğer bu sistemi kullanıyorsan tavsiye ettiğin içeriğin pozitif taraflarından bahsetmek zorunda olduğunu lütfen unutma. Yapıcı eleştiri hakkında daha fazla bilgi almak için burayı okuyabilirsin.
Kurallar
Platform Kuralları
Bu platform; okuduğunuz kitaplara, izlediğiniz filmlere/belgesellere veya takip ettiğiniz YouTube kanallarına yönelik tavsiylerinizi ve/veya yapıcı eleştirel fikirlerinizi girebilmeniz içindir. Tavsiye etmek istediğiniz eseri bulamazsanız, buradan yeni bir kayıt oluşturabilirsiniz. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu platformun ek kurallarına da uymanız gerekmektedir.
1
Önceliğimiz pozitif tavsiyelerdir.
Bu platformu, beğenmediğiniz eserleri yermek için değil, beğendiğiniz eserleri başkalarına tanıtmak için kullanmaya öncelik veriniz. Sadece negatif girdileri olduğu tespit edilenler platformdan geçici veya kalıcı olarak engellenebilirler.
2
Tavsiyenizin içeriği sadece negatif olamaz.
Tavsiye yazdığınız eserleri olabildiğince objektif bir gözlükle anlatmanız beklenmektedir. Dolayısıyla bir eseri beğenmediyseniz bile, tavsiyenizde eserin pozitif taraflarından da bahsetmeniz gerekmektedir.
3
Negatif eleştiriler yapıcı olmak zorundadır.
Eğer tavsiyenizin ana tonu negatif olacaksa, tüm eleştirileriniz yapıcı nitelikte olmak zorundadır. Yapıcı eleştiri kurallarını buradan öğrenebilirsiniz. Yapıcı bir tarafı olmayan veya tamamen yıkıcı içerikte olan eleştiriler silinebilir ve yazarlar geçici veya kalıcı olarak engellenebilirler.
4
Düzgün ve insanca iletişim kurun.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
5
Türkçeyi düzgün kullanın.
Şair olmanızı beklemiyoruz; ancak yazdığınız içeriğin anlaşılır olması ve temel düzeyde yazım ve dil bilgisi kurallarına uyması gerekmektedir.
Eser Ara
Aradığınız eseri bulamadıysanız buraya tıklayarak ekleyebilirsiniz.
Tür Ekle
Üst Takson Seç
Kurallar
Komünite Kuralları
Bu platform, yaşamış ve yaşayan bütün türleri filogenetik olarak sınıflandırdığımız ve tanıttığımız Yaşam Ağacı projemize, henüz girilmemiş taksonları girebilmeniz için geliştirdiğimiz bir platformdur. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Takson adlarını doğru yazdığınızdan emin olun.
Taksonların sadece ilk harfleri büyük yazılmalıdır. Latince tür adlarında, cins adının ilk harfi büyük, diğer bütün harfler küçük olmalıdır (Örn: Canis lupus domesticus). Türkçe adlarda da sadece ilk harf büyük yazılmalıdır (Örn: Evcil köpek).
2
Taksonlar arası bağlantıları doğru girin.
Girdiğiniz taksonun üst taksonunu girmeniz zorunludur. Eğer üst takson yoksa, mümkün olduğunca öncelikle üst taksonları girmeye çalışın; sonrasında daha alt taksonları girin.
3
Birden fazla kaynaktan kontrol edin.
Mümkün olduğunca ezbere iş yapmayın, girdiğiniz taksonların isimlerinin birden fazla kaynaktan kontrol edin. Alternatif (sinonim) takson adlarını girmeyi unutmayın.
4
Tekrara düşmeyin.
Aynı taksonu birden fazla defa girmediğinizden emin olun. Otomatik tamamlama sistemimiz size bu konuda yardımcı olacaktır.
5
Mümkünse, takson tanıtım yazısı (Taksonomi yazısı) girin.
Bu araç sadece taksonları sisteme girmek için geliştirilmiştir. Dolayısıyla taksonlara ait minimal bilgiye yer vermektedir. Evrim Ağacı olarak amacımız, taksonlara dair detaylı girdilerle bu projeyi zenginleştirmektir. Girdiğiniz türü daha kapsamlı tanıtmak için Taksonomi yazısı girin.
Gönder
Tür Gözlemi Ekle
Tür Seç
Fotoğraf Ekle
Kurallar
Komünite Kuralları
Bu platform, bizzat gözlediğiniz türlerin fotoğraflarını paylaşabilmeniz için geliştirilmiştir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Net ve anlaşılır görseller yükleyin.
Her zaman bir türü kusursuz netlikte fotoğraflamanız mümkün olmayabilir; ancak buraya yüklediğiniz fotoğraflardaki türlerin özellikle de vücut deseni gibi özelliklerinin rahatlıkla ayırt edilecek kadar net olması gerekmektedir.
2
Özgün olun, telif ihlali yapmayın.
Yüklediğiniz fotoğrafların telif hakları size ait olmalıdır. Başkası tarafından çekilen fotoğrafları yükleyemezsiniz. Wikimedia gibi açık kaynak organizasyonlarda yayınlanan telifsiz fotoğrafları yükleyebilirsiniz.
3
Paylaştığınız fotoğrafların telif hakkını isteyemezsiniz.
Yüklediğiniz fotoğraflar tamamen halka açık bir şekilde, sınırsız ve süresiz kullanım izniyle paylaşılacaktır. Bu fotoğraflar nedeniyle Evrim Ağacı’ndan telif veya ödeme talep etmeniz mümkün olmayacaktır. Kendi fotoğraflarınızı başka yerlerde istediğiniz gibi kullanabilirsiniz.
4
Etik kurallarına uyun.
Yüklediğiniz fotoğrafların uygunsuz olmadığından ve başkalarının haklarını ihlâl etmediğinden emin olun.
5
Takson teşhisini doğru yapın.
Yaptığınız gözlemler, spesifik taksonlarla ilişkilendirilmektedir. Takson teşhisini doğru yapmanız beklenmektedir. Taksonu bilemediğinizde, olabildiğince genel bir taksonla ilişkilendirin; örneğin türü bilmiyorsanız cins ile, cinsi bilmiyorsanız aile ile, aileyi bilmiyorsanız takım ile, vs.
Gönder
Tür Ara
Aradığınız türü bulamadıysanız buraya tıklayarak ekleyebilirsiniz.