Paylaşım Yap
Tüm Reklamları Kapat
Tüm Reklamları Kapat

Seçilimin Evrime Etkisi ve Uyum Başarısının Matematiği

Seçilimin Evrime Etkisi ve Uyum Başarısının Matematiği Ths Spruce Pets
14 dakika
7,965
Evrim Ağacı Akademi: Matematiksel Evrim Yazı Dizisi

Bu yazı, Matematiksel Evrim yazı dizisinin 7. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Matematiksel Evrime Genel Giriş" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
Tüm Reklamları Kapat

Bir önceki yazımızda, diğer yazı dizilerimizde daha genel kapsamda ele aldığımız seçilim olgusunun daha akademik detaylarına girmiştik ve farklı sayıdaki lokus sayısıyla ifade edilen özelliklere göre geliştirilen farklı modellerin varlığından söz etmiştik. Ancak daha önemlisi, mutasyonların evrimin ana mekanizması olamayacağı gerçeğini matematiksel olarak ispatladıktan sonra, mutasyonların yarattığı varyasyonlar üzerine etki eden seçilimin ne kadar önemli bir evrimsel kuvvet olduğunu sözel olarak açıklamış, örnekler vermiştik. Şimdi ise bu konunun matematiğine girerek, mutasyonlara kıyasla seçilimin ne kadar hızlı bir şekilde evrimi tetikleyebileceğini göstereceğiz. Böylece matematik alet çantamıza yeni formüller ekleyerek, Hardy-Weinberg Dengesi'nin ikinci kuralı olan "Dengenin var olması için seçilim olmayacak." ilkesini bozsak bile popülasyonların evrimsel analizi nasıl yapabileceğimizi göreceğiz.

Öncelikle, herkesin genel hatlarıyla bildiği seçilim olgusunu sayısal bir düzleme oturtalım: Yine tek lokuslu (2 alelli) bir model kullanacağız, en basitini yani. Alellerimizin adı B1 ve B2 olsun bu defa. Tıpkı A ve a gibi; ancak farklı harflere ve isimlendirmelere de alışın diye böyle yapmayı uygun görüyoruz. Hemen bir başlangıç frekansı tanımlayalım:

Tüm Reklamları Kapat

p = 0.6

q = 0.4

Tüm Reklamları Kapat

p'nin B1'in frekansı, q'nun ise B2'nin frekansı olduğunu hatırlayınız. Toplamlarının 1 olmak zorunda olduğunu da hatırlayınız. Bu durumda, eğer ki popülasyon içerisinde 100 birey varsa ve başlangıçta elimizdeki popülasyon Hardy-Weinberg Dengesi'nde ise, artık genotip frekanslarını nasıl bulabileceğinizi biliyorsunuz, yine de bir defa daha hatırlatalım:

B1B1 = p2 = (0.6)2 = 0.36

B1B2 = 2pq = 2*(0.6)*(0.4) = 0.48

Evrim Ağacı'ndan Mesaj

B2B2 = q2 = (0.4)2 = 0.16

Tabii bunlar sadece bu genotiplerin (gen yapılarının) frekansını verecektir. Eğer ki 100 birey varsa, bu frekansları 100 ile çarpmanız gerekiyor. Kısaca, popülasyondaki birey sayısı ile her bir genotipin frekansını çarparak, her bir genotipin popülasyonda kaç adet bulunduğunu bulabilirsiniz. Bu durumda: 

  • B1B1 genotipinden 36 tane, 
  • B1B2 genotipinden 48 tane,
  • B2B2 genotipinden 16 tane bulunur.

Şimdi, bu genotiplerin bulundukları ortam koşullarından ötürü hepsinin hayatta kalamadığını varsayalım. Yani bu noktada Hardy-Weinberg Dengesi'ni bozuyoruz. Çünkü hatırlayacak olursanız bu denge dahilinde her bireyin hayatta kaldığı ve eşit sayıda ürediği varsayılıyordu. Ancak bu gerçek popülasyonlarda böyle değildir. Her genetik varyasyonun hayatta kalma başarısı birbirinden farklıdır. İşte şimdi bu gerçeği modelimize dahil edeceğiz. Diyelim ki:

  • B1B1 genotipinin tamamı (%100'ü) hayatta kalsın.
  • B1B2 genotipinin %75'i hayatta kalsın.
  • B2B2 genotipinin yarısı (%50'si) hayatta kalsın.

Bu sayılar vahşi doğada gözlemler ve deneylerle tespit edilmektedir. Belli bir popülasyon sürekli olarak gözlem altında tutularak hangi genlere sahip olanların ne kadar hayatta kalabildikleri ve üreyebildikleri takip edilir. Böylece hangi genotipin yüzde kaç başarıya sahip olduğu tespit edilerek analizler yapılabilir. 

Evrimsel uyum başarısı, doğrudan hayatta kalabilme becerisiyle ilgilidir.
Evrimsel uyum başarısı, doğrudan hayatta kalabilme becerisiyle ilgilidir.

Bu durumda ata popülasyon seçilim baskısı altında bırakıldığında, kaç tanesi hayatta kalabilecek ve üreyecektir? Çok basit! Bu hayatta kalma oranlarını, birey sayısı ile hayatta kalma oranlarını çarparız. Dolayısıyla, 

Tüm Reklamları Kapat

  • B1B1 genotipinin tamamı (36 birey) hayatta kalır.
  • B1B2 genotipinin 36 bireyi hayatta kalır (48 * 0.75 = 36).
  • B2B2 genotipinin 8 bireyi hayatta kalır (16 * 0.50 = 8).

Şimdi, bu noktada ikinci bir seçilim unsurunu, Cinsel Seçilim kavramını hesaba katabiliriz. Ancak daha önce de bahsettiğimiz gibi, matematiksel analiz bakımından Doğal Seçilim ile Cinsel Seçilim'in hiçbir farkı yoktur. İkisi de, yukarıda verildiği gibi bir yüzde ile ifade edilir. Dolayısıyla burada Cinsel Seçilim'in etkisini analize dahil etmek için yapacağınız tek şey, 3 diğer yüzde sayı belirleyerek hayata kalan bireyleri o yüzdelerle çarpmak ve üreyebilenleri belirlemektir. Bunu, sayıları daha da küçültmemek adına burada yapmayacağız, ancak pratik olarak siz uygulayabilirsiniz. Örneğin eğer ki üreme başarıları sırayla %50, %39 ve %88 olsaydı, kaç birey üreme başarısına ulaşırdı? Bunu hesaplamayı size bırakıyoruz (merak edenler için cevabı yazının sonunda verdik).

Cinsel Seçilim'i hesaba katmadığımız için, yukarıdaki sayılarla devam ediyoruz. Diyelim ki bu canlıların her biri eşit sayıda üreme hücresi (gamet) üretsin ve bunların hepsi üreme havuzuna katılabilsin. Tabii ki gerçek hayatta bu da böyle değildir; bazı gametler başarısız olarak ölür, havuza dahil olamaz. Bu sebep, başka bir yüzdeyi işin içine sokabilir (ya da Cinsel Seçilim'e dahil edilebilir). Ancak hesabı basit tutmak adına, her birinin 10 adet üreme hücresi ürettiğini varsayalım. Bu durumda:

  • B1B1 genotipi 360 adet B1 gameti üretir (36 * 10 = 360).
  • B1B2 genotipi 180 adet B1, 180 adet B2 gameti üretir (360 * 10 / 2 = 180).
  • B2B2 genotipi 80 adet B2 gameti üretir (8 * 10 = 80)

Şimdi, başlangıçtaki gibi B1 ve B2 alellerinden oluşan yeni bir popülasyon var elimizde. Hatırlayacak olursanız başlangıçtaki alel frekansları 0.6 ile 0.4'tü. Acaba şimdi de aynı kaldı mı? Eğer aynı kaldıysa, Hardy-Weinberg Dengesi bozulmamış demektir. Ancak oranlar değiştiyse, bu denge bozulmuş ve evrim işliyor demektir. Bakalım neler oldu?

Alelleri nasıl sayarız? En baştaki yazılarımızı hatırlayın. Her bir alelin sayısını, toplama böleceğiz. B1 ile başlayalım. Kaç tane B1 aleli olduğunu sayacağız. Yukarıdan görebileceğiniz gibi, sadece 2 yerden (B1B1 ve B1B2 genotiplerinden) B1 aleli gelmektedir. Bu durumda, bunları toplayacağız ve toplam alel sayısına (360 + 360 + 80) böleceğiz. Bu işlem bize şunu verir:

Tüm Reklamları Kapat

p = (360 + 180) / (360 + 360 + 80)

p = 540 / 800

p = 0.675

İşte bu! Alel sayımız ciddi biçimde değişti! Eskiden 0.6 olan alel miktarı, şimdi 0.675 oldu. Yani B1 aleli üzerinde pozitif seçilim olduğunu söyleyebiliriz, çünkü sayısı arttı. Peki B2 aleline ne oldu? Evet, tahmin edebileceğiniz gibi o da azaldı. Alel frekanslarının toplamının her zaman 1'e eşit olması gerektiğini hatırlayın. Bu durumda:

Tüm Reklamları Kapat

Agora Bilim Pazarı
Hoş Geldin - İlk İki Yaşın Sihri

Hayatın ilk yılları sevgiyi büyütmek içindir. Diğer her şey bundan sonra gelir. O sizin çocuğunuz. Sizin mucizeniz. Şimdi kollarınızın arasındaki bu varlık bir gün kendi ayakları üzerinde yürüyecek… O güne kadar birlikte bir ritim yakalamalı, beraber olmaktan mutlu olacağınız bir aile yaratmalı, çocuğunuzun kabul gördüğü ve ihtiyaç duyduğu her an dönebileceğini bildiği bir alan inşa etmelisiniz: Bir yuva.

Ünlü psikolog ve aile terapisti Hedvig Montgomery, 23 dilde yayımlanıp büyük beğeni toplayan Anne Baba Sihri serisinin ikinci kitabında bebeklik dönemine, o büyülü ve fırtınalı 24 aya odaklanıyor. Bebeği nasıl uyutacağımız, ağladığında nasıl sakinleştireceğimiz, emzirme, dil becerisi, bakıcılı hayat gibi anne babanın karşılaşması muhtemel gündelik sorunlar ve önemli eşikler için anlaşılır ve somut çözümler öneren Montgomery, aynı zamanda çocuğumuzla aramızdaki o eşsiz bağı nasıl kuracağımızı, duyguların ve sevginin kökenine inmenin inceliklerini, geçmişimize dair unuttuğumuz her şeyi çocuğumuzla birlikte hatırlamayı, hayat boyu ona eşlik edecek güven duygusunu kazandırmanın yollarını anlatıyor.

Devamını Göster
₺160.00
Hoş Geldin - İlk İki Yaşın Sihri
  • Dış Sitelerde Paylaş

q = 1 - p

q = 0.325

Aynı sayıya, B2 aleli sayısını toplam alel sayısına bölerek de elde edebilirsiniz. Gördüğünüz gibi sayı, 0.4'ten 0.325'e düşmüştür. Yani B2 aleli üzerinde negatif seçilim vardır.

İşte evrim budur. Evrim, popülasyon içerisindeki alel frekanslarının değişimidir. Canlıların değişimi, farklılaşması, türleşmesi bu temelden başlar. Her evrimsel süreçte canlının dramatik bir değişim geçirmesi şart değildir. O canlının popülasyonundaki genlerin dağılım frekansları değişse yeterlidir.

Hayatta kalma mücadelesinin sonucu, uyum başarısı ile belirlenir. Uyum başarısı, hayatta kalma mücadelesinin bir sonucudur.
Hayatta kalma mücadelesinin sonucu, uyum başarısı ile belirlenir. Uyum başarısı, hayatta kalma mücadelesinin bir sonucudur.

Uyum Başarısı

Şimdi her yazımızda mutlaka öyle veya böyle değindiğimiz şu meşhur "uyum başarısı" konusunu matematiksel olarak ifade etmeyi öğrenelim. Çünkü evrimde her şey uyum başarısıyla ilgilidir. Bir bireyin hayatta kalıp kalmayacağı uyum başarısı ile belirlenir. Bir bireyin hayatta kalsa bile üreyip üreyemeyeceği uyum başarısı ile belirlenir. Bir popülasyonun ne yöne doğru evrimleşeceği, o popülasyondaki bireylerin ortalama uyum başarısı ile belirlenir. Bir popülasyonun yok olup olmayacağı ortalama uyum başarısıyla belirlenir. Daha doğru ifadesiyle, biz popülasyonları inceleyip onların evrimsel değişimlerini uyum başarısı ile ifade eder ve analiz ederiz. Yoksa elbette ki canlılar ve popülasyonlar oturup, hesap kitap yaparak uyum başarılarını belirlemezler veya buna göre evrimleşmezler.

Doğada uyum başarısını hesaplayabilmek için bazı deneyler ve gözlemler yaparız. İşaretlediğimiz bireylerin doğada ne kadar süre hayatta kaldıklarını ve kaç tane yavru üretebildiklerini gözleriz. Buna göre mutlak uyum başarısı adını verdiğimiz değeri ortaya çıkarırız. Açık konuşmak gerekirse bu uyum başarısı doğrudan hiçbir anlam ifade etmez. Çünkü bir türün tek bir bireyinin kendi başına nasıl hayatta kaldığı ve ne kadar ürediği bize bilgi vermez. Önemli olan aynı türün diğer bireylerine (ya da genotiplerine) göre o bireyin (ya da genotipin) ne kadar uyumlu olabildiğinin görülmesidir. Bir diğer deyişle, bize evrimsel açıdan bilgi veren uyum başarısı, göreceli uyum başarısı adını verdiğimiz kavramdır. Fakat bunu hesaplayabilmek için, söz konusu gözlemleri yaparak öncelikle mutlak uyum başarısını bulmamız gerekir.

Bunu genellikle tekil bireyler bazında değil ama genotipler bazında yaparız. Yani her bir genotipin genel uyum başarısını gözleyip, istatistiki analizler yaparak mutlak uyum başarılarını hesaplarız. Şimdi bunu matematiksel olarak görelim. Diyelim ki elimizde şöyle bir popülasyon var:

  • AA genotipinde 40 birey var ve bunların %10'u (0.1) hayatta kalıyor.
  • AB genotipinde 50 birey var ve bunların %7.5'i (0.075) hayatta kalıyor.
  • BB genotipinde 60 birey var ve bunların %5'i (0.05) hayatta kalıyor.

Görülebileceği gibi, bireylerin belli bir nesildeki sayısı, bize onların uyum başarısı hakkında doğrudan pek bir bilgi vermez. AA genotipindeki bireylerin sayısı daha az olmasına rağmen, verilen spesifik bir çevre koşulu altında en çok onlar hayatta kalabilmektedir. Benzer şekilde, BB genotipinden en çok birey bulunmasına rağmen, aynı çevre şartlarında en az hayatta kalabilenler bu bireylerdir. Bu durumda doğada da sıklıkla rastlarız. Evrimsel süreç, bir yöne doğru ilerlerken, çevrenin tamı tamına zıttına dönmesi sonucu önceki popülasyonlarda çok sayıda bulunabilen bireyler daha sık olarak elenmeye başlayabilir. Bu durumun bir diğer açıklaması da, Cinsel Seçilim'in etkisidir. Dikkat edilecek olursa, yukarıdaki bireylerin sadece hayatta kalma oranlarından söz edilmektedir. Eğer ki üreme başarıları arasında bariz bir fark varsa, bu durum Doğal Seçilim'in eleyici etkisini baskılayabilir. Yani çok daha az sayıda hayatta kalabilen BB genotipi, çok daha yüksek üreme başarısına sahip olarak, hayatta kalma başarısı en yüksek olan AA genotipini sayıca geçme fırsatını bulabilir. Ancak bunlar teknik detaylardır ve şu anda bizi çok fazla ilgilendirmemektedir. Yukarıdaki sayılardan devam ederek şu tabloyu oluşturabiliriz:

Şimdi bir bakalım... İlk sütunda genotipler dizilenmiştir. Yukarıda verdiklerimizle aynı olduğuna dikkat ediniz. İkinci sütunda ise mutlak uyum başarısı verilmektedir. Yani önceki nesildeki birey sayısı ile oların hayatta kalma ihtimali çarpılır. Örneğin AA genotipinden 40 birey olduğunu ve hayatta kalanların oranının %10 olduğunu söylemiştik. Bu durumda 40 ile 0.1 sayısını çarparak, mutlak uyum başarısını elde ederiz. Ancak bunun doğrudan hiçbir anlamı olmadığını hatırlayınız. Yine de, bu kavram bize çok daha önemli bir kavramın kapısını aralayacak.

Görebileceğiniz gibi mutlak uyum başarıları açısından şöyle bir durum söz konusudur:

Tüm Reklamları Kapat

  • AA genotipi 4 değerine sahiptir.
  • AB genotipi 3.75 değerine sahiptir.
  • BB genotipi 3 değerine sahiptir.

Fark edebileceğiniz gibi, ola ki belli bir genotipin başlangıç sayısı abartılı miktarda diğerlerinden farklıysa, mutlak uyum başarısı da bundan etkilenebilecektir. Benzer şekilde, eğer ki hayatta kalma oranı diğerlerinden bariz farklı olan bir genotip varsa, sayıca daha az bireye sahip olsa da, diğerlerinin önüne geçebilecektir. Bu örnekte, BB genotipi en çok sayıda bulunsa bile, hayatta kalma oranları dolayısıyla mutlak uyum başarısı en düşük olan genotip yine BB'dir. AA genotipi içinse tam tersi bir durum söz konusudur.

Ancak bu kavram bir anlam ifade etmez. Dediğimiz gibi, AA genotipinin tek başına ne kadar hayatta kaldığının hiçbir anlamı yoktur. Önemli olan, örneğin AA genotipinin AB genotipine göre ne oranda hayatta kalabildiğidir. İşte bunu anlayabilmek için, göreceli uyum başarısı denen bir kavramı inceleriz. Bu kavram, basit bir şekilde, her bir genotipin mutlak uyum başarısını, mutlak uyum başarısı en yüksek olan bireyin değerine bölerek bulunur. Örneğimizde en yüksek mutlak uyum başarısı 4'tür. Dolayısıyla her bir genotipin mutlak uyum başarısı bu değer oranlanır. Bu, şu şekilde yapılır:

  • AA genotipinin mutlak uyum başarısı olan 4 değeri, en yüksek mutlak uyum başarısı değeri olan 4'e (kendisine) bölünür: 1
  • AB genotipinin mutlak uyum başarısı olan 3.75 değeri, en yüksek mutlak uyum başarısı değeri olan 4'e bölünür: 0.94
  • BB genotipinin mutlak uyum başarısı olan değeri, en yüksek mutlak uyum başarısı değeri olan 4'e bölünür: 0.75

İşte şimdi, çok önemli bir evrimsel kavramı elde etmiş olduk: göreceli uyum başarısı. Dikkat edecek olursanız, AA genotipinin uyum başarısı, bu durumda %100'e (1) eşittir. BB genotipinin uyum başarısı ise %75'tir (0.75). Yani bu genotiplerin birbirlerine kıyasla uyum başarılarını artık biliyoruz. Göreceli uyum başarısı, genellikle omega (ω) ile gösterilir. Basitçe, w harfiyle de ifade edilebilir.

Bu kavramı, daha da önemli bir diğer kavrama dönüştürebiliriz: seçilim baskısı (katsayısı). Makalelerimizde de sıklıkla söz ettiğimiz gibi, değişen çevreler, popülasyonlar üzerine seçilim baskıları yaratır. Kimi zaman bu baskı aşırı şiddetli olduğundan ötürü türü ya da belli bir genotipi yok edecek kadar baskın olabilir. Kimi zamansa popülasyonlar ortamlarına o kadar uyumludurlar ki ve çevre o kadar az değişir ki, türlerin evrimleşmesine gerek kalmaz; daha doğrusu onları evrimleşmeye zorlayacak çevresel bir kuvvet kalmaz. İşte tam olarak bu sebeple, günümüzde az sayıda da olsa, atasal formlarından pek de fazla değişmeyerek günümüze kadar ulaşmayı başarmış yaşayan fosiller vardır (Sölekantlar ya da Nautilus gibi).

Tüm Reklamları Kapat

Sölekant
Sölekant

Seçilim baskısı (s), doğrudan göreceli uyum başarısı ile ilişkilidir. Bir canlının göreceli uyum başarısı ne kadar yüksekse, üzerindeki seçilim baskısı o kadar düşüktür. Benzer şekilde, bir canlının göreceli uyum başarısı ne kadar düşükse, üzerindeki seçilim baskısı o kadar fazladır. Bu oldukça mantıklıdır. Canlı etrafına ne kadar uyumluysa, ne kadar kolay hayatta kalıyorsa ve ne kadar kolay ürüyorsa, üzerinde o kadar zayıf seçilim baskısı bulunur. Dolayısıyla, seçilim baskısını basitçe 1'den uyum başarısını çıkararak buluruz. Bu durumda:

  • Göreceli uyum başarısı 1 olan AA genotipinin üzerindeki seçilim baskısı (1 - 1) işleminden ötürü 0'dır (üzerinde hiç seçilim baskısı yoktur).
  • Göreceli uyum başarısı 0.94 olan AB genotipinin üzerindeki seçilim baskısı (1 - 0.94) işleminden ötürü 0.06'dır (oldukça düşük).
  • Göreceli uyum başarısı 0.75 olan BB genotipinin üzerindeki seçilim baskısı (1-0.75) işleminden ötürü 0.25'tir (epey yüksek).

Bu durumda, üzerindeki seçilim baskısı en fazla olan genotipin (BB) nesiller içerisinde giderek yok olmasını, üzerindeki seçilim baskısı en az olan genotipinse (AA) popülasyon içerisinde giderek yayılmasını bekleriz. Gerçekten de, eğer ki böyle durumdaki bir popülasyon incelenecek olursa, nesiller içerisinde zayıf genotip giderek yok olur, uyumlu olansa giderek baskın hale gelir. 

Bu farklılığın nedeni, kimi zaman alellerin sağladığı değişimlerdir. Örneğin yukarıdaki örnekte, A aleli uyum başarısını arttırıyorken, B aleli o çevre için uyum başarısını düşürüyor olabilir. Bu nedenle BB genotipi en zayıfken AA genotipi en uyumlusu olabilir. Tüm bunları anlamak için, gözlemler ve analizler yapmak gerekmektedir. Fakat bu tür etkiler, doğada sıklıkla gördüğümüz değişimler ve etkilerdir.

Ortalama Uyum Başarısı

Bu yazımızı sonlandırmadan önce değinmek istediğimiz son konumuz olan ortalama uyum başarısı kavramına bir bakalım. Çünkü adından da anlayabileceğiniz gibi, çoğu zaman tek bir bireyin göreceli uyum başarısı veya o birey üzerindeki seçilim baskısı bizim için çok fazla anlam ifade etmez. Çünkü 1.000.000 bireyden oluşan bir popülasyonda tekil bir bireyin hayatta kalıp kalmadığı o kadar önemli değildir (en azından evrimsel analizimiz için). Önemli olan, tüm popülasyonun geleceğini belirleyecek olan ve her bir bireyin göreceli uyum başarısına bağlı olarak hesaplanan ortalama uyum başarısıdır. Bu kavram genellikle veya ŵ harfleriyle ifade edilir. Yani ω veya w üzerine çekilen bir çizgi ile. O çizgi (bar), "ortalama" anlamına gelmektedir.

Tüm Reklamları Kapat

Ortalama uyum başarısını (tek lokus - iki alel modeli için) aşağıdaki formülle hesaplarız:

ῶ = (FAA * ωAA) + (FAB * ωAB) + (FBB * ωBB

Basitçe, her bir genotipin popülasyon içerisindeki frekansı ile o genotipin göreceli uyum başarısının çarpımını toplarız. Bu toplam bize ortalama uyum başarısını verir. Hatırlayacak olursanız alellerin frekansını p ve q harfleriyle göstermiştik. Ancak bu değerleri bildiğimiz sürece, Hardy-Weinberg Dengesi çerçevesinde p2, 2pq veya q2 hesaplamalarıyla genotiplerin de frekansını hesaplayabiliriz. Bu frekansları da F harfiyle gösteriyoruz. Eğer ki bu frekans hesaplarını ekleyerek yazacak olursak, yukarıdaki formülümüz aynı zamanda şöyle ifade edilebilir:

ῶ = (p2 * ωAA) + (2pq * ωAB) + (q2 * ωBB

Tüm Reklamları Kapat

Bu konuda daha anlatılması gereken birçok önemli nokta var. Seçilim, bu yazımızda gördüğümüz gibi evrimin ana mekanizmalar bütünü olduğu için, matematiksel etkisi de çok farklı şekillerde analiz edilebiliyor. Ancak bu yazıyı daha fazla uzatmamak adına burada keseceğiz ve bir sonraki yazımızda heterozigot ve homozigot durumlarının evrimsel sürece seçilim açısından nasıl etki ettiğine bakacağız. Böylece, seçilimin matematiksel etkisini daha genel bir formülle verebilecek ve alleleri tek tek, seçilim baskısı altındayken analiz edebileceğiz.

Not: Yazı içerisindeki Cinsel Seçilim hesabını yapmak isteyenler ve cevabı merak edenler için, cevap şu şekilde:

  • B1B1 genotipinden 18 birey üreyerek evrimsel başarıya ulaşır (36 * 0.5 = 18).
  • B1B2 genotipinden 14 birey üreyerek evrimsel başarıya ulaşır (36 * 0.39 = 14).
  • B2B2 genotipinden 7 birey üreyerek evrimsel başarıya ulaşır (18 * 0.88 = 7).
Bu Makaleyi Alıntıla
Okundu Olarak İşaretle
Evrim Ağacı Akademi: Matematiksel Evrim Yazı Dizisi

Bu yazı, Matematiksel Evrim yazı dizisinin 7. yazısıdır. Bu yazı dizisini okumaya, serinin 1. yazısı olan "Matematiksel Evrime Genel Giriş" başlıklı makalemizden başlamanızı öneririz.

Yazı dizisi içindeki ilerleyişinizi kaydetmek için veya kayıt olun.

EA Akademi Hakkında Bilgi Al
73
0
  • Paylaş
  • Alıntıla
  • Alıntıları Göster
Paylaş
Sonra Oku
Notlarım
Yazdır / PDF Olarak Kaydet
Bize Ulaş
Yukarı Zıpla

İçeriklerimizin bilimsel gerçekleri doğru bir şekilde yansıtması için en üst düzey çabayı gösteriyoruz. Gözünüze doğru gelmeyen bir şey varsa, mümkünse güvenilir kaynaklarınızla birlikte bize ulaşın!

Bu içeriğimizle ilgili bir sorunuz mu var? Buraya tıklayarak sorabilirsiniz.

Soru & Cevap Platformuna Git
Bu İçerik Size Ne Hissettirdi?
  • Bilim Budur! 10
  • Muhteşem! 4
  • Tebrikler! 4
  • Mmm... Çok sapyoseksüel! 2
  • İnanılmaz 2
  • Merak Uyandırıcı! 2
  • Umut Verici! 1
  • Güldürdü 0
  • Üzücü! 0
  • Grrr... *@$# 0
  • İğrenç! 0
  • Korkutucu! 0
Kaynaklar ve İleri Okuma
  • J. Herron. (2019). Evolutionary Analysis. ISBN: 0321616677. Yayınevi: Pearson.
  • D. Futuyma. (2013). Evolution, Douglas Futuyma. ISBN: 1605351156. Yayınevi: Oxford University Press.
Tüm Reklamları Kapat

Evrim Ağacı'na her ay sadece 1 kahve ısmarlayarak destek olmak ister misiniz?

Şu iki siteden birini kullanarak şimdi destek olabilirsiniz:

kreosus.com/evrimagaci | patreon.com/evrimagaci

Çıktı Bilgisi: Bu sayfa, Evrim Ağacı yazdırma aracı kullanılarak 29/03/2024 02:58:58 tarihinde oluşturulmuştur. Evrim Ağacı'ndaki içeriklerin tamamı, birden fazla editör tarafından, durmaksızın elden geçirilmekte, güncellenmekte ve geliştirilmektedir. Dolayısıyla bu çıktının alındığı tarihten sonra yapılan güncellemeleri görmek ve bu içeriğin en güncel halini okumak için lütfen şu adrese gidiniz: https://evrimagaci.org/s/396

İçerik Kullanım İzinleri: Evrim Ağacı'ndaki yazılı içerikler orijinallerine hiçbir şekilde dokunulmadığı müddetçe izin alınmaksızın paylaşılabilir, kopyalanabilir, yapıştırılabilir, çoğaltılabilir, basılabilir, dağıtılabilir, yayılabilir, alıntılanabilir. Ancak bu içeriklerin hiçbiri izin alınmaksızın değiştirilemez ve değiştirilmiş halleri Evrim Ağacı'na aitmiş gibi sunulamaz. Benzer şekilde, içeriklerin hiçbiri, söz konusu içeriğin açıkça belirtilmiş yazarlarından ve Evrim Ağacı'ndan başkasına aitmiş gibi sunulamaz. Bu sayfa izin alınmaksızın düzenlenemez, Evrim Ağacı logosu, yazar/editör bilgileri ve içeriğin diğer kısımları izin alınmaksızın değiştirilemez veya kaldırılamaz.

Tüm Reklamları Kapat
Keşfet
Akış
İçerikler
Gündem
Hızlı
Gezegen
Egzersiz
Yangın
Kuantum Fiziği
Diyet
Mavi
Antibiyotik
Balina
Evrim Tarihi
Genetik Değişim
İngiltere
Şiddet
Tür
Türlerin Kökeni
Hayatta Kalma
Gebelik
Doğal
Biyocoğrafya
Radyoaktif
Oyun
Astrofizik
Buz
İyi
Damar
Aklımdan Geçen
Komünite Seç
Aklımdan Geçen
Fark Ettim ki...
Bugün Öğrendim ki...
İşe Yarar İpucu
Bilim Haberleri
Hikaye Fikri
Video Konu Önerisi
Başlık
Gündem
Bugün Türkiye'de bilime ve bilim okuryazarlığına neler katacaksın?
Bağlantı
Kurallar
Komünite Kuralları
Bu komünite, aklınızdan geçen düşünceleri Evrim Ağacı ailesiyle paylaşabilmeniz içindir. Yapacağınız paylaşımlar Evrim Ağacı'nın kurallarına tabidir. Ayrıca bu komünitenin ek kurallarına da uymanız gerekmektedir.
1
Bilim kimliğinizi önceleyin.
Evrim Ağacı bir bilim platformudur. Dolayısıyla aklınızdan geçen her şeyden ziyade, bilim veya yaşamla ilgili olabilecek düşüncelerinizle ilgileniyoruz.
2
Propaganda ve baskı amaçlı kullanmayın.
Herkesin aklından her şey geçebilir; fakat bu platformun amacı, insanların belli ideolojiler için propaganda yapmaları veya başkaları üzerinde baskı kurma amacıyla geliştirilmemiştir. Paylaştığınız fikirlerin değer kattığından emin olun.
3
Gerilim yaratmayın.
Gerilim, tersleme, tahrik, taciz, alay, dedikodu, trollük, vurdumduymazlık, duyarsızlık, ırkçılık, bağnazlık, nefret söylemi, azınlıklara saldırı, fanatizm, holiganlık, sloganlar yasaktır.
4
Değer katın; hassas konulardan ve öznel yoruma açık alanlardan uzak durun.
Bu komünitenin amacı okurlara hayatla ilgili keyifli farkındalıklar yaşatabilmektir. Din, politika, spor, aktüel konular gibi anlık tepkilere neden olabilecek konulardaki tespitlerden kaçının. Ayrıca aklınızdan geçenlerin Türkiye’deki bilim komünitesine değer katması beklenmektedir.
5
Cevap hakkı doğurmayın.
Bu platformda cevap veya yorum sistemi bulunmamaktadır. Dolayısıyla aklınızdan geçenlerin, tespit edilebilir kişilere cevap hakkı doğurmadığından emin olun.
Ekle
Soru Sor
Sosyal
Yeniler
Daha Fazla İçerik Göster
Popüler Yazılar
30 gün
90 gün
1 yıl
Evrim Ağacı'na Destek Ol

Evrim Ağacı'nın %100 okur destekli bir bilim platformu olduğunu biliyor muydunuz? Evrim Ağacı'nın maddi destekçileri arasına katılarak Türkiye'de bilimin yayılmasına güç katın.

Evrim Ağacı'nı Takip Et!
Yazı Geçmişi
Okuma Geçmişi
Notlarım
İlerleme Durumunu Güncelle
Okudum
Sonra Oku
Not Ekle
Kaldığım Yeri İşaretle
Göz Attım

Evrim Ağacı tarafından otomatik olarak takip edilen işlemleri istediğin zaman durdurabilirsin.
[Site ayalarına git...]

Filtrele
Listele
Bu yazıdaki hareketlerin
Devamını Göster
Filtrele
Listele
Tüm Okuma Geçmişin
Devamını Göster
0/10000
Bu Makaleyi Alıntıla
Evrim Ağacı Formatı
APA7
MLA9
Chicago
Ç. M. Bakırcı. Seçilimin Evrime Etkisi ve Uyum Başarısının Matematiği. (7 Nisan 2014). Alındığı Tarih: 29 Mart 2024. Alındığı Yer: https://evrimagaci.org/s/396
Bakırcı, Ç. M. (2014, April 07). Seçilimin Evrime Etkisi ve Uyum Başarısının Matematiği. Evrim Ağacı. Retrieved March 29, 2024. from https://evrimagaci.org/s/396
Ç. M. Bakırcı. “Seçilimin Evrime Etkisi ve Uyum Başarısının Matematiği.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, 07 Apr. 2014, https://evrimagaci.org/s/396.
Bakırcı, Çağrı Mert. “Seçilimin Evrime Etkisi ve Uyum Başarısının Matematiği.” Edited by Çağrı Mert Bakırcı. Evrim Ağacı, April 07, 2014. https://evrimagaci.org/s/396.
ve seni takip ediyor

Göster

Şifrenizi mi unuttunuz? Lütfen e-posta adresinizi giriniz. E-posta adresinize şifrenizi sıfırlamak için bir bağlantı gönderilecektir.

Geri dön

Eğer aktivasyon kodunu almadıysanız lütfen e-posta adresinizi giriniz. Üyeliğinizi aktive etmek için e-posta adresinize bir bağlantı gönderilecektir.

Geri dön

Close