Kuş Yumurtalarında Renklerin Evrimi ve Görsel Ekoloji

Yazdır Kuş Yumurtalarında Renklerin Evrimi ve Görsel Ekoloji
Evrim süreci boyunca kuşlar farklı tüy renklerine, desenlerine ve yumurta renk örüntülerine sahip oldular. Renklere dayalı bu farklılıklar kuşlara taklitçilik, gizlenme, avlanma, avcıdan kaçınma, kimlik ayırt etme ve partnerine kalitesini belli etme gibi sayısız işlev kazandırdı (Hill & McGraw 2006). Madem bu renk örüntüleri kuşlarda böylesine bir iletişim kabiliyetine neden oluyor, o halde onların bu karmaşık örüntülerini anlayabilmelerini sağlayan algılama sistemlerini de çözmemiz gerekir, öyle değil mi? İşte günümüz teknolojisindeki ilerlemeler ve bu alandaki teorik gelişmeler, "kuş bakışını" anlayabilme yolunda bir devrim yaratmış halde; zira artık opsin genlerinin genetik dizilemesini kontrol ederek ışık reseptörlerinin hassasiyet parametrelerini değiştirebiliyoruz. Bu da kuşların dünyayı nasıl gördüklerine yönelik bir algı modeli kurmamıza olanak veriyor. Bu modeller sayesinde görsel ekolojinin,  başta yumurta mimikrisi (taklitçiliği), UV ışık hassasiyeti olmak üzere kuş iletişim ve tanıma sistemlerinin evriminde, ve kuşlar arasında ortaya çıkan davranışsal farklarda oynadığı rolü daha iyi anlıyoruz (Hubbar et al. 2010).

 


Yumurta Renk Örüntülerinin Evrimi 
 
Kuş yumurtaları çok çeşitlidir. Kimisi tamamen beyaz, kimisi parlak renkli, kimisi biraz, kimisiyse fazlaca benekli. Peki neden? Neden kuş yumurtaları bu kadar çeşitli renk ve desenlere sahipler? Farklı kuş familyalarına ait yumurta kabuğu örüntülerini karşılaştıran araştırmacılara göre, bu çeşitliliği ortaya çıkaran başlıca faktörlerden birisi "kuluçka asalaklığı" (Kilner 2006). Kuluçka asalağı olarak adlandırılan türler, yumurtalarını başka türlerin yuvalarına bırakır ve yavrularını konak türe büyütürler. Yani konağı kendisine ait olmayan bir civcivi yetiştirme maliyetiyle karşı karşıya bırakırlar (Davies 2000). Konağın bu maliyeti yüklenip yüklenmeyeceği, yabancı yumurtanın renk veya desenine bağlıdır. Örneğin Avrupa'da yaşayan karabaşlı yalı bülbülü (Syliva atricapilla), asalak guguk kuşunun (Cuculus canorus) konak olarak bellediği bir türdür. Normalde bu kuş, kendi yumurtalarına benzemeyen (mimetik olmayan) tüm yumurtaları yüksek bir kesinlikle reddeder (Honza et al. 2004).  Lakin -deneysel bir çalışmadan elde edilen sonuçlara göre-, karabaşlı yalı bülbülü kendi yumurtalarına çok benzeyen (mimetik) yumurtaların tamamını ayırt edemez ve ancak %36'sını reddedebilir (Polacikova et al. 2007). %100’lük başarıyla kıyasla bu oran biraz düşükmüş gibi görünebilir; ancak konağın genetik olarak kendiyle ilgisiz, bambaşka türe ait bir yavruyu yetiştirmek için harcama riskiyle karşı karşıya kaldığı zaman ve enerjinin miktarı düşünülürse, bu başarı bile önemli bir adaptasyon anlamına gelir.
 
Guguk kuşunun dadandığı bu ve diğer konakların hepsi temelde basit bir kurala dayalı davranır: "Seninkine benzemeyen yumurtayı dışarı at!". Güzel… Ama bir kuş kendi yumurtasının neye benzediğini nereden ve nasıl biliyor? Bu sorunun yanıtını bulmak isteyen araştırmacılar, kuş yumurtalarından sadece birini, birden fazlasını ya da tamamını boyamak suretiyle manipüle ettikleri çeşitli deneyler gerçekleştirdiler (Şekil 1). Bu deneyler, sözgelimi büyük kamışçın kuşunun (A. arundinaceus) guguk kuşu yumurtalarını ayrıt etmek için yumurtalardaki renk farklılıklarını ve kendi yumurtalarının nasıl olduğuyla ilgili anılarını esas aldıklarını ortaya koydu (Moskát et al. 2010).


Şekil 1: Konak kuşun yumurtalarının (bu şekilde ardıçkuşu -Turdus philomelos- yumurtaları görünüyor) renkleri ve şekillerinin değiştirildiği deneyden fotoğraflar. Bu deneyde yumurtaları ayırt etmede görsel ekolojinin rolünü anlamak için ebat, şekil, kabuk kalınlığı gibi diğer özelliklere dokunulmadı. Soldaki şekil, bir yumurtanın tamamen koyu renge boyanarak manipüle edildiği bir deneyden, sağdakiyse bir yumurtanın lekelerinin büyütüldüğü deneyden. © 2010 Nature Education - M. Hauber. Her hakkı saklıdır. 


Oldukça şaşırtıcı ama konaklardaki bu işaret tanıma yeteneğine karşılık olarak, evrimsel süreç boyunca farklı guguk kuşları farklı konak türler için ileri düzeyde yumurta taklitçiliğine soyunabilmişlerdir (Şekil 2). Bu silahlanma yarışı boyunca gelişen yumurta mimikrisi, konakların görsel hassasiyetlerini ve yabancı yumurtayı tespit edip onu yuvadan atma becerilerini de etkilemiş görünüyor. Bu keskinlikte bir ayırt etme kabiliyeti elbette araştırmacıların da ilgisini çekiyor ve araştırmacılar konakların yuvalarına, çeşitli seviyelerde benzerliğe sahip yumurtalar yerleştirerek, konağın renk ve leke algılarının fark eşiklerini anlamaya çalışıyorlar.

Şekil 2: Hem konak hem de guguk kuşu yumurtalarının bulunduğu yuvalar. Görüldüğü gibi, siyah okla gösterilen guguk kuşu yumurtaları insan gözü için neredeyse kusursuz benzerlikte.



Kuşlarda Renk Algısı

Bir araştırmacı yumurta renklerini manipüle etmeden önce, konak kuş türünün hangi renkleri görebildiğini iyi anlaması gerekir. Özellikle de manipüle edeceği rengi görüp görmediğini. Omurgalıların retinalarında yer alan koni fotoreseptörleri (Şekil 3) renkleri algılamaktan sorumludur. Spesifik fotopigmentleri içeren opsinleri ifade eden genler koni hücrelerinde bulunur ve bu genler sayesinde ışığın belli dalga boylarına azami duyarlılığa sahip protein kombinasyonları üretilir. Bir bireyin sahip olduğu farklı opsin sayısıyla o bireyin algılayabildiği renk sayısı birbiriyle ilintilidir.

Şekil 3: Bir memeli retinasının şematik gösterimi.
Public Domain WikiMedia Commons.


Kuş retinaları memeli retinalarına göre bazı açılardan farklılık gösterir; özellikle de sahip oldukları koni türü ve sayısı bakımından. İki ya da üç koni tipine sahip olan memelilerden farklı olarak, kuşlar dört farklı koni tipine sahiptirler (Şekil 4) ve bu da kuşları tetrakromatik bir görüşe sahip kılar (Şekil 5; Hunt et al. 2009). Tetrakromatlar teoride trikromatların (örneğin insan) iki katı renk görme kabiliyetine sahiptirler. Bu kabiliyet farkının hayata yansıması şöyle örneklenebilir: Bizler için iki yumurta birbirine tıpatıp benziyorken, bir kuş için ikisi bariz bir biçimde farklı renge sahip olabilir. Bu gerçeğin bilimsel araştırmalar için de bir açmaz yarattığı ortada: Zira renklere karşı zaten bizden daha duyarlı olan kuşların yumurtalarını nasıl manipüle edeceğimiz yanıtlanmaya muhtaç bir soru.

Şekil 4: İnsan retinasındaki üç konik opsin (S, M, L) ve bir rodopsinin maksimum dalgaboyu emilimleri arasındaki fark. 
Public Domain WikiMedia Commons


Pek çok ötücü kuşu da içeren bazı kuş takımları, bizlerin göremediği UV bandındaki ışığı da görme kabiliyetine sahipler (Hart 2001). Avrupa'daki kuluçka asalağı guguk kuşunun ve Kuzey Amerika'da yaşayan kahverengi başlı inek kuşunun (Molothrus ater) konakları ötücü kuşlardır; yani bu asalakların hedefledikleri konak kuşlar, insan için algılaması mümkün olmayan UV renk farklılıklarını algılıyor ve parazit yumurtayı buna göre ayıklıyor olabilirler. Opsinlerden biri (SWS1) en kısa dalgaboylarına hassasiyet gösterir ve tüm omurgalı sınıflarında bulunur (Hazel et al. 2006). İnsanlarda ve pek çok kuş türünde SWS1 opsini mor ışığa azami yanıt veren koni hücrelerinde ifade edilirler (bu türler, bu nedenle, mora duyarlı olarak adlandırılırlar – Violet-Sensitive: VS). Ne var ki bazı ötücü kuş türlerinde SWS1 opsininin kodladığı fotoreseptörlerinin hassas olduğu dalgaboyu yelpazesi UV alanını da bir miktar işgal eder (Şekil 6). Dolayısıyla bu türden bir SWS1 opsinine sahip olan canlılar UV'ye duyarlıdırlar (Ultra-violet Sensitive: UVS; Hart 2001; Ödeen & Håstad 2003; Hunt et al. 2009).

Şekil 5: Ultraviyoleye duyarlı (UVS) ve mora duyarlı (VS) türlerin SWS1 opsin fotoreseptörlerinin azami dalgaboyu emilim eğrileri arasındaki fark. © 2010 Nature Education Her hakkı saklıdır.


Görünüşe göre ilk omurgalı ataların SWS1 opsini UV'ye zaten duyarlıymış. Fakat primatlarda ve kuşlarda bu yetenek zamanla kaybolmuş (Yokoyama 2000; Jacobs & Rowe 2004; Meraklısına omurgalılarda renk görüşünün evrimi hakkında sağlam bir derleme). Öte yandan SWS1 duyarlılığındaki kayma aracılığıyla, UVS kabiliyeti kuşlarda birbirinden bağımsız olarak en az dört kez yeniden evrimleşmiş (Hunt et al. 2009). UV duyarlılığı; cinsel görünürlük, av/avcı tespiti, mora duyarlı avcılar tarafından algılanamayan iletişim  (Håstad et al. 2005) ve yumurta taklitçiliğine karşı savunma mekanizması olmak gibi (Honza et al. 2007; Underwood & Sealy 2008) pek çok davranışsal ve ekolojik işlevi beraberinde getirir. Nitekim az önce referans verilen iki çalışma, konak ve asalak yumurtalarının UV yansımalarının farklı olduğunu ve konak kuşların yumurtaları sadece UV bandında görünür örüntüler sayesinde ayırt ettiklerini ortaya koydu. Lakin bu işlev bilinse de, UV duyarlılığının kuluçka asalaklığına bir yanıt olarak mı evrimleştiği yoksa evrimsel tarihlerinde bir şekilde zaten kavuştukları bu yeteneklerin kuluçka asalaklığına karşı da işe mi yaradığı sorusu hala tam olarak yanıtlanmış değil (Underwood & Sealy 2008).
 
Öte yandan, ağaç kovuklarında yuvalanan kuşların yumurtalarının, açık yuva yapan kuşlarınkine göre daha yüksek UV yansımasına sahip olması (Aviles et al.2006), ebeveynlerin UV ışınlarını kullandıkları yönünde başka bir kanıt daha sağlıyor. Mesela kovuğa yuvalayan kuşlardan olan kara sığırcık (Sturnus unicolor) kovuk içindeki yuvanın hemen dışına bırakılan deneysel yumurtalardan yüksek UV yansımasına sahip olanlarını düşük olanlarına göre daha fazla kabul etme eğilimi gösteriyor (kabul etmek: dışarıdaki yumurtayı yuvaya taşımak anlamına geliyor).
 
Peki SWS1 opsininin hangi kuş türlerinde UV'ye, hangilerinde mora duyarlı olduğunu tam olarak nasıl anlayacağız? Fizyolojik ve moleküler teknikler sayesinde kuşların görsel algılama sistemleri hakkında bilgimiz giderek artıyor ve gözde bulunan opsinlerin duyarlılıkları hakkında bizlere yeni bilgiler sunuyor. Geleneksel yöntem olan mikrospektrofotometri herhangi bir fotoreseptörün içinden ışık geçirmek ve hangi dalgaboylarının emildiğini ölçmek suretiyle maksimum dalgaboyu emilimin eğrisini çıkarmaya yarıyordu (Govardovskii et al. 2000). Lakin bugünlerde kullanılan yöntem, SWS1'in DNA dizilemesine bakarak, VS/UVS duyarlılıklarından hangisinin var olduğunu çok daha ucuz ve ölümcül olmayan bir şekilde anlamayı sağlıyor  (Ödeen & Håstad 2003). Bir SWS1 fotoreseptörünü, ya da başka bir deyişle bir kuş türünü mora duyarlı halden ultraviyoleye duyarlı hale getirmek için tek bir amino asit değişimi yeterli (Yokoyama et al. 2000). Günümüzde SWS1 opsininin genetik dizilemesi, kesin ve güvenilir bir şekilde gerçekleştirilebiliyor. Bu da bu yöntemi mikrospektrofotometriye ucuz bir alternatif haline getiriyor (lakin şuna göz atmakta fayda var: Smith et al. 2002). Ayrıca yöntemin bu özellikleri, koruma altındaki türlerle çalışma imkânını da beraberinde getiriyor (Igic et al. 2010).
 

Kuş Görsel Sistemi'nin Algısal Modeli
 
Moleküler genetik çalışmalarına, ışık yansıma ölçümlerine ve davranışsal deneylere dayanan bu entegre çalışmalar sayesinde kuşların gördükleri ve kullandıkları görsel örüntüler sayısallaştırılabiliyor (Vorobyev & Osorio 1998; Endler & Mielke 2005). Lakin bu sayıların, yani fizyolojik ve genetik verilerin yorumlanması için bir kuşun ne gördüğünün bir dizi parametreye bağlı olarak (retinaya ulaşan ışık miktarı ve belli bir türün gözlerinde bulunan fotoreseptörlerin tipleri ve miktarı gibi) matematiksel olarak bir modele oturtulması gerekiyor. Opsin genlerinin genetik dizilemesinden elde edilen fizyolojik veriler (Ödeen & Håstad 2003), araştırmacıların kuşların görsel algısı ve yumurta reddetme kararı gibi davranışsal yansımaları hakkında kesin modeller üretmelerini sağlıyor (Cassey et al. 2008). Daha sonra yüzeyden yansıyan ışık bir spektrofotometre ile ölçülüp, kurulan algı modellerinde filtre ediliyor (yani tahmini modele göre bir kuşun gözünden nasıl göründüğü hesaplanıyor) ve böylece iki farklı yüzeyden yansıyan ışığın bu filtrelerden geçtikten sonra hâlâ aralarında örüntü ya da renk farkları olup olmadığına bakılıyor. Yani kuşların bu farkı algılayıp, algılayamadığına…
 

Renk Görüşü Görsel Ekoloji ile Davranışsal Kararları Birbirine Bağlıyor!
 
Algısal modelleme, farklı kuş türlerinin yumurta kabuğunu algılamada gösterdikleri farklılıklar (e.g. Cassey et al. 2009; Cassey et al. 2010), insan atıklarının yuva yapı malzemesi olarak algılanarak kullanılması (Igic et al. 2009) ve seksüel dimorfizm (cinsel çiftbiçimlilik) gibi (Igic et al. 2010) daha pek çok fenomenin araştırılması için uyarlanabilir. Algısal modelleme ile ilgili sıradaki çalışmalar, asalak ve konak yumurtaları arasındaki renk farklılıklarını esas alarak, konak kuşların bu farkları algılayıp algılamadığına odaklanmalı. Bu yazıda ele alınan entegre yaklaşım, gelecekteki araştırmacılara kuş türleri ve hatta diğer görsel yönelimli hayvanlardaki mimikri, kamuflaj, partner kalitesi, sağkalım ve üreme için kritik öneme haiz diğer davranışsal işlevleri kesin ve net olarak tanımlama şansı veriyor. Ne de olsa artık moleküler teknikler ve duyusal modelleme araştırmacılara kuşlarda renk görüşünün altında yatan mekanizmayı araştırma şansı tanıyor; hem de invasif yöntemlere hiç başvurmadan!

Yazan: Zachary Aidala (Graduate Center, CUNY) & Mark E. Hauber (Dept. of Psychology at Hunter College, CUNY)

Çeviren: Tevfik Uyar

Düzenleyenler: ÇMB ve Ayşegül Şenyiğit (Evrim Ağacı)

Orijinal Kaynak: Aidala, Z. & Hauber, M. E. (2010) Avian Egg Coloration and Visual Ecology. Nature Education Knowledge 3(10):53

Kaynaklar ve İleri Okuma:
  1. Aviles, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: a possible functional role of ultraviolet reflectance in egg detectability. Proceedings of the Royal Society of London B 273, 2821–2829 (2006).
  2. Cassey, P., Honza, M., Grim, T. & Hauber, M. E. The modeling of avian visual perception predicts behavioural rejection responses to foreign egg colours. Biology Letters 4, 515–517 (2008).
  3. Cassey, P. et al. Are avian eggshell colours effective intraspecific communication signals in the Muscicapoidea? A perceptual modelling approach. Ibis 151, 689–698 (2009).
  4. Cassey, P. et al. Variability in avian eggshell colour: a comparative study of museum eggshells. PLoS ONE 5, e1 2054 (2010).
  5. Davies, N. B. Cuckoos, Cowbirds, and Other Cheats. London: Poyser, 2000.
  6. Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biological Journal of the Linnaean Society 86, 405-431 (2005).
  7. Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Visual Neuroscience 17, 509–528 (2000).
  8. Hart, N. S. The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research 20, 675–703 (2001).
  9. Håstad, O., Victorsson, J. & Ödeen, A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proceedings of the National Academy of Sciences USA 102, 6391–6394 (2005).
  10. Hill, G. E. & McGraw, K. J. Bird Coloration. Mechanisms and Measurements, vol. 1. Cambridge, MA: Harvard University Press, 2006.
  11. Honza, M. et al. Are blackcaps current winners in the evolutionary struggle against the common cuckoo? Journal of Ethology 22, 175–180 (2004).
  12. Honza, M., Polaciková, L. & Prochazka, P. Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biological Journal of the Linnean Society 92, 269–276 (2007).
  13. Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics 26, 231–239 (2010).
  14. Hunt, D. M., Carvalho, L. S., Cowing, J. A. & Davies, W. L. Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London B 364, 2941–2955 (2009).
  15. Igic, B., Cassey, P., Samas, P., Grim, T. & Hauber, M. E. Cigarette butts form a perceptually cryptic component of song thrush (Turdus philomelos) nests. Notornis 56, 134–138 (2009).
  16. Igic, B. et al. Size dimorphism and avian-perceived sexual dichromatism in a New Zealand endemic bird, the whitehead Mohoua albicilla. Journal of Morphology 271, 697–704 (2010).
  17. Jacobs, G. H. & Rowe, M. P. Evolution of vertebrate colour vision. Clinical and Experimental Optometry 87, 206–216 (2004).
  18. Kilner, R. M. The evolution of egg colour and patterning in birds. Biological Reviews 81, 383–406 (2006).
  19. Moskát, C., Bán, M., Székely, T., Komdeur, J., Lucassen, R. W. G., van Boheemen, L. A. & Hauber, M. E. Discordancy or template-based recognition? Dissecting the cognitive basis of foreign eggs in hosts of avian brood parasites. Journal of Experimental Biology 213, 1976–1983 (2010).
  20. Ödeen, A. & Håstad, O. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution 20, 855–861 (2003).
  21. Polacikova, L., Honza, M., Prochazka, P., Topercer, J. & Stokke, B.G. Colour characteristics of the blunt egg pole: cues for recognition of parasitic eggs as revealed by reflectance spectrophotometry. Animal Behaviour 74, 419–427 (2007).
  22. Smith, E. L., Greenwood, V. J. & Bennet, A. T. D. Ultraviolet colour perception in European starlings and Japanese quail. Journal of Experimental Biology 205, 3299–3306 (2002).
  23. Underwood, T. J. & Sealy, S. G. UV reflectance of eggs of brown-headed cowbirds (Molothrus ater) and accepter and rejecter hosts. Journal of Ornithology 149, 313–321 (2008).
  24. Van Hazel, I., Santini, F., Mϋller, J. & Chang, B. S. W. Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics. BMC Evolutionary Biology 6, 97 (2006).
  25. Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London B 265, 351–358 (1998).
  26. Yokoyama, S. Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research 19, 385–420 (2000).
  27. Yokoyama, S., Radlwimmer, F. B. & Blow, N. S. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proceedings of the National Academy of Sciences USA 97, 7366–7371 (2000).
6 Yorum