Evrim Mekanizmaları - 10: Transpozonlar

Yazdır Evrim Mekanizmaları - 10: Transpozonlar

Son birkaç yazımızda evrimin daha ikincil planda kalan; ancak çeşitliliğin var edilmesi açısından çok ciddi öneme sahip bazı mekanizmaları anlatmaktayız. Bu sayede umuyoruz ki mutasyonların evrimin çeşitlilik açısından muhtaç olduğu tek mekanizma olmadığını görmeye başlamışsınızdır. Hatırlayacak olursanız, bir önceki yazımız Gen Aktarımı, ya da Crossing-over ile ilgiliydi. Bu yazımızda da sizlere bir diğer önemli değişim ve çeşitlilik mekanizması olan Transpozonlardan bahsedeceğiz. 

 

Transpozonlar, tek bir hücrenin içerisinde bulunan ve sıklıkla bulundukları yerden koparak farklı bölgelere "sıçrayan" gen parçalarıdır. Transpozonal Sıçramalar, transpozonal bölgelerin önce kendilerini kopyalayıp, sonra bu kopyaların sıçraması şeklinde olabileceği gibi (bilgisayardaki "Kopyala/Yapıştır" işlemi gibi düşünebilirsiniz); gen parçalarının olduğu gibi, bulundukları yerden koparak yeni bir yere yerleşmeleri şeklinde de olabilir (bilgisayardaki "Kes/Yapıştır" işlemi gibi düşünebilirsiniz). Örneğin aşağıdaki görselde, sarı-turuncu-sarı renklerle gösterilen transpozonal element, kendisini kopyalayarak karşı tarafa sıçramış ve normalde birleşik olan mor gen diziliminin ortasına yapışmıştır:

 


 


Transpozonal sıçramalar gerçekten çok önemli bir Evrim Mekanizması'dır, çünkü hem fenotipi kökten değiştirebilecek etkilere sahiptirler, hem de genom büyüklüğünün değişmesini sağlayabilirler. Özellikle ökaryotik hücrelerde, genom büyüklüğü üzerinde çok ciddi etkileri vardır. Çünkü bir transpozon, kendini kopyalayıp hem kendisini, hem de kopyasını DNA üzerinde farklı bölgelere yapıştırabilir. Bu şekilde, genomun büyümesine sebep olur. Eğer bu değişim, canlıya avantaj sağlarsa, gelecek nesillere de aktarılır. Böylece uzun evrimsel süreçte canlıların genom büyüklükleri değişir. Ayrıca transpozonal sıçramalar ve bunların korunumu farklı türlerde kıyaslanarak oldukça güvenilir evrimsel analizler yapılabilmekte, türlerin birbirleriyle olan akrabalıkları incelenebilmektedir. Tüm bunlardan, transpozonların evrim açısından önemini anlayabiliriz. Bu önemli mekanizma, Barbara McClintock tarafından keşfedilmiş ve kaşif, 1983 yılında Nobel Ödülü ile ödüllendirilmiştir. McClintock, transpozonlarla ilgili çalışmalarına 1944 yılında başlamış, konuyla ilgili en meşhur makalesini 1950 yılında yayımlamış, keşfin öneminin bilim camiasınca fark edilmesi ve ödüllendirilmesi ise 1983'e kadar sürmüştür.


Transpozonların önemini çok basit bir cümleyle izah edebiliriz: yüksek ökaryotların neredeyse tamamının genomlarının ortalama %50'si transpozonlardan oluşmaktadır. Bu geniş transpozonal genler, genomun her köşesine saçılmış şekildedir. İşte evrimsel biyologlar ve popülasyon genetikçileri bu transpozonların yerlerini saptayıp, akraba türlerde aynı lokasyonlarda bu transpozonların varlığı incelenip, evrimsel yakınlıkları ve uzaklıkları, taksonomik olarak ait oldukları yerler, vb. önemli sonuçlara varılabilmektedir.

 




Transpozonların Tipleri


Yukarıda açıkladığımız gibi, iki çeşit transpozon bulunur:

 


A) Birinci Sınıf Transpozonlar

 

Birinci Sınıf Transpozonlar, ya da bir diğer adıyla Retrotranspozonlar, kendilerini kopyalarlar ve bu kopya DNA üzerinde bir diğer noktaya sıçrayıp yapışabilir. Bunun için öncelikle DNA'dan transkripsiyon mekanizması ile küçük DNA segmentleri üretilir; daha sonra bu RNA kullanılarak, geri transkripsiyon yöntemi ile DNA sentezlenir (retrovirüsler ve retrotranspozonlar, Merkezi Dogma isimli kuralı bozan elementlerdir). Üretilen bu retrotranspozon, tıpkı retrovirüsler gibi davranabilir. DNA'dan kopabilir, DNA üzerindeki farklı bir bölgeye yapışabilir ve hatta kimi durumda hücrenin dışına çıkarak bir diğer hücrenin DNA'sına yapışabilir. Bu durumda bir plazmid gibi davrandığını düşünebiliriz; bunu bir sonraki yazımızda açıklayacağız. Temel olarak transpozonların HIV virüsü gibi davranabildiğini düşünebilirsiniz.

 






Retrotranspozonların da üç alt grubu keşfedilmiştir:

 


1) Viral Retrotranspozonlar, RNA'dan DNA sentezleyebilecek "geri transkriptaz" enzimlerini kodlarlar. Genetik yapılarında uzun bitiş tekrarları (long terminal repeat) bulunur. Tıpkı retrovirüslere benzerler. Yaklaşık 100-5000 baz çifti uzunluğunda olabilirler. İnsan genomunun yaklaşık %8'i ve fare genomunun yaklaşık %10'unu oluştururlar. Bu alt gruba ait iki tip keşfedilmiştir: alglerden kapalı tohumlu bitkilere, açık tohumlu bitkilere kadar pek çok canlıda bulunan Ty1-copia retrotranspozonları ile yine çok sayıda canlıda keşfedilmiş olan Ty3-gypsy retrotranspozonları.

 


2) Uzun Serpiştirilmiş Nükleotid Elementleri (LINE: Long Interspersed Nucleotide Elements) isimli diğer grupta da, tam boyda olanlarında geri transkriptaz enzimleri bulunur ve RNA'dan DNA sentezleyebilir. Ayrıca hemen hepsinde endonükleaz enzimleri de taşıyarak çoklu-nükleotit dizilerinin orta bölgelerindeki fosfodiester bağlarını kırabilir. Ancak uzun bitiş kodlarını taşımaz ve RNA polimeraz II enzimi aracılığıyla çoğalırlar. İnsan genomunda yaklaşık 500.000 farklı LINE bulunur, bu da genomun %17'si eder. Bunlardan yaklaşık 7.000 tanesi tam boydadır ve geri transkripsiyon yapabilir.

 


3) Kısa Serpiştirilmiş Nükleotid Elementleri (SINE: Short Interspersed Nucleotide Elements) ise 500 baz çiftinden kısa boya sahip transpozonlardır. RNA polimeraz III enzimiyle salgılanan tRNA, rRNA gibi parçaların geri transkripsiyonuyla üretilir. Üzerlerinde fonksiyonel geri transkriptaz enzimleri bulunmaz ve sadece farklı bölgelere sıçrayarak, orada halihazırda salgılanmış enzimleri kullanarak kendilerini kopyalayabilirler. İnsan genomunun %11'ini oluştururlar. Büyük bir kısmı hurda DNA olarak görülse de (yani Evrimsel süreçte işlevini yitirmiş genlerse de), halen bir kısmı işlev görebilmektedir. 

 



Çimen türü bitkilerde yapılan transpozon analizi. Toplamda 20.270 ortolog gen tespit ve analiz edilmiştir. 






B) İkinci Sınıf Transpozonlar

 

İkinci Sınıf Transpozonlar, ya da diğer adıyla DNA Transpozonları, ilk sınıfın aksine kendilerini kopyalamazlar ve olduğu gibi yer değiştirirler. Bu transpozonların sıçramaları transpozaz isimli enzimlerle sağlanır. Bu enzimlerin bir kısmı, transpozonların DNA'nın sadece belirli bölgelerine bağlanmasını sağlayabilirken, bir diğer kısmı DNA'nın hemen her bölgesine bağlanmayı sağlayabilir. Temel olarak enzimin yaptığı, transpozonal parçayı DNA üzerinden keserek, iki ucunda "yapışkan" olarak isimlendirdiğimiz parçalar bırakmaktır. Bu "yapışkanlık", elbette kimyasal çekim gücünden ibarettir; yani bu uçlar bir an önce bağlanmak isterler. DNA polimeraz ve DNA ligaz enzimleri sayesinde sıçradıkları yer doldurulur. Bu işlemler sırasında mutasyonlar meydana gelme ihtimali de çok yüksektir. Kimi zaman bu tip transpozonların da kendilerini kopyaladıkları görülmüştür.

 




Bu iki sınıf transpozon da, evrimsel süreçte kendilerini kopyalama özelliklerini yitirebilirler; ancak sıçrama özelliklerini yitirdikleri bir duruma hiç rastlanmamıştır; çünkü zaten bir gen parçasını "transpozon" yapan, kendisini DNA üzerinden koparabilecek enzimleri salgılayabilmesidir. Bildiğiniz gibi DNA'nın tek görevi, üretilecek enzimlerin ve proteinlerin dizilimini saklamaktır. İşte transpozonların üzerlerinde kodlanan dizilim ise, kendilerini bulundukları yerden koparıp başka bir yere sıçratacak enzimlerdir. Ayrıca transpozonların sıçrama yeteneklerini kaybetmemelerinin bir diğer sebebi, etraftaki transpozonların enzimlerini kullanarak da sıçrayabilmeleridir. 



Transpozonlara Örnekler

 

Pek çok türde, yüzlerce farklı transpozonal gen keşfedilmiştir. Bunların hepsine burada girmeyi gereksiz görüyoruz. Ancak bir fikir vermesi adına, Zea mays türünde Ac/Dc transpozonları; Drosophila melanogaster türünde P elementleri ve Mariner-benzeri elementler; Homo sapiens türünde Alu dizilimleri; Mu fajının kendisi; Saccharomyces ceravisiae türünde Ty1, Ty2, Ty3, Ty4 ve Ty5 transpozonları bunlara birkaç örnektir.

 

Transpozonların mutajen (mutasyona sebep olucu) olduklarını hatırlatmakta fayda görüyoruz. Çünkü bir transpozon, genellikle sıçradığı bölgedeki işlevsel geni, işlevsiz hale getirecektir. Ayrıca transpozon eğer sıçramadan önce kendisini kopyalamadıysa, boşalan yerden ötürü bu gen de işlev göremeyebilecektir. Ya da transpozonun kendisi işlevselse, kendisini kopyalaması ve farklı yerlere yapıştırması, işlevinin kat kat görülmesine sebep olabilecektir. Yapılan araştırmalarda transpozonların hemofili, Ağır Bileşik Savunma Yetersizliği (SCID), poriferi, kanser, Duchenne kas distrofisi gibi hastalıklara sebep oldukları görülmüştür.

 

Transpozonların evrimsel süreçte nasıl oluştukları hala bir merak konusudur; ancak gün geçtikçe çözülmektedir. Yapılan araştırmalara göre, transpozonların tıpkı retrovirüsler gibi, tüm canlıların ortak atası olan koaservatlardan itibaren var oldukları düşünülmektedir. Kimi bilim insanı ise, en baştan beri var olan bu yapıların, evrimsel süreçte bağımsız olarak birkaç defa daha evrimleştiğini düşünmektedir. Çoğu transpozon, bilim insanları tarafından "bencil DNA parazitleri" olarak değerlendirilmektedir. Yani transpozonlar, DNA'yı kullanarak kendilerini çoğaltırlar ve hücrenin kaynaklarını kullanırlar; ancak çoğu zaman bulundukları hücreye zarar verirler. Öte yandan çok güçlü bir varyasyon yaratıcısıdırlar. Transpozonların etkisi gün geçtikçe daha iyi anlaşılmaktadır ve kaynaklarımızdan okuyabileceğiniz Science makalesinde transpozonların "parazit" olarak kategorize edilmemesi gerektiğini savunan bilim insanlarının sayısı da artmaktadır.




Mısır tanelerinde meydana gelen noktalanmaların sebebi transpozonlardır. Mısır koçanları üzerinde yapılan çalışmalar, transpozonların evrimsel öneminin anlaşılmasında büyük rol oynamıştır.

 


İlginç bir şekilde, doğada bazı canlılar, özellikle de bazı bakteriler, transpozonların genomlarını bozmalarını engelleyecek bazı mekanizmalar evrimleştirmişlerdir. Örneğin bazı bakterilerde bulunan RNAi (RNA Interference) kullanarak sıçrayan transpozonları yok ederler. Ökaryotik canlılarda da benzer savunma mekanizmaları gelişmiştir. İnsan genomundaki transpozonların bir kısmı uyku halindedir ve hücrenin salgıladığı enzimler sayesinde hareket etmeleri engellenir. Bilimde buna "Uyuyan Güzel transpozon sistemi" denmektedir. Ne var ki, insan da dahil olmak üzere her canlı evrim geçirdiği için, kimi durumda bu "uyuyan" transpozonlar uyanmakta ve yeniden aktif olmaktadır. Örneğin insanda Tc1/mariner-benzeri transpozonunun milyonlarca yıllık bir uykudan sonra yeniden aktif olduğu keşfedilmiştir.

 

Transpozonlar, günümüzde medikal uygulamalarda da kullanılmaya başlanmıştır. Özellikle gen terapisinde kullanılan transpozonlar, dışarıdan gen eklenerek istenilen şekilde manipüle edilmektedir.


Transpozonların faydalı evrimsel değişmelere yol açtığını gösteren en deneyler arasında Lenski ve arkadaşlarının uzun dönemli E. coli deneylerini de sayabiliriz. Lenski ve arkadaşları 1 bakteri hücresinden kurulan 12 popülasyonu laboratuvar ortamında evrimleşmeye yönelttiler. Yıllar sonra yapılan bir analizde, 12 popülasyonun da riboz şekerini sindirme yeteneğini ciddi oranda kaybettiğini gözlemlediler. Atasal hücreler, -80 derecede saklandığı yerden yıllar sonra çıkarıldı ve onların riboz şekerini sindirme hususunda başarılı oldukları ispatlandı. Dolayısıyla riboz sindirimi, nesiller içerisinde körelerek, evrimsel olarak yok olmuştu. 



Richard Lenski'nin laboratuvarından bir fotoğraf...



Öyleyse bilim insanları, riboz sindirme yetisinin neden 12 popülasyonda da kaybolduğunu araştırmalıydı. Lenski ve arkadaşları, bakterilerin riboz sindiren enzimleri üreten Ribose operonlarının DNA incelemesini yaptılar. Görüldü ki bütün hepsinin sorumlu genlerinde büyük miktarda silinmeler vardı. Bu durumda şunun sorulması gerekmekteydi: bu silinmeler mutasyonlar sonucu mu oldu, yoksa transpozonlar gibi daha büyük, sıçramalı gen değişimlerinin etkisi mi oldu?


Bu evrimsel değişimin faydalı mutasyonlar olup olmadığını hesaplamaya koyuldular. Atasal bakterileri derin dondurucudan çıkardılar ve evrimleşmiş gen versiyonlarını onlara aktardılar. Bu gen bölgesi dışında izogenik olan atasal hücreler deney ortamında çoğalma hızı bakımından yarıştırıldılar. Onlarca deneysel yarışma gösterdi ki, genleri delesyona uğramış olanlar atasalarına göre daha hızlı ürüyorlar ve kısa sürede baskın hale geliyorlardı. Demek ki Lenski'nin deney ortamında riboz operonunu yitirmek faydalı mutasyonlar olarak tanımlanabilirdi. Dolayısıyla mutasyonların etkisi vardı; ancak bu mutasyonları tetikleyen neydi? Normal şekilde, nükleotit bazında meydana gelen değişimler mi, yoksa daha kapsamlı bir nedeni mi vardı?


Araştırmaları sonucunda bu silinmelerinin hepsinin IS transpozonu isimli bir elementin yanında duruyordu. İşte delesyonlar, IS transpozonundan kaynaklanıyordu. Transpozonların yarattığı mutasyonlar, bakterilere faydalı oluyordu. Yine de Lenski ve ekip arkadaşları, transpozondan-bağımsız bir delesyonun bakteriye faydalı olup olmadığını ölçmeye niyetlendi. 


Atasal bakterinin riboz operonunu tamamen sildiler. Gördükleri muhteşemdi, mutant bakteriler atalarından %2 daha hızlı ürüyorlardı. Böylesine faydalı bir mutasyonun hızla yaygınlaşması ve deneyin ilk anlarında çıkmış olması muhtemeldi. Bunu denemek adına Lenski ve arkadaşları deneyin çeşitli yıllarında aldıkları örnekleri derin dondurucudan çıkardılar ve gen versiyonlarını aradılar. Gördüler ki ilk 500 nesil boyunca hücreler halen riboz sindirebiliyordu, ama 2000. nesile gelindiğinde 12 popülasyonun 11 tanesi bu özelliğini kaybettiren alelleri taşıyordu. 


Bu deneysel çalışmalar bizlere, transpozonların faydalı mutasyonlar yaratabildiklerini, faydalı mutasyonların çok kısa süre içinde yayılabileceğini ve evrimsel seçilim baskısının ortak olmasının benzer fenotipik değişimlere yol açacağını deneysel açıdan kanıtlamaktadır. Peki sorarsanız, riboz operonunun silinmesi neden avantajlıdır? İhtiyacın olmayan bir yapıyı, organı, sistemi taşımak maliyetlidir. İhtiyaç olmayan bir organı taşımanın evrimsel ekonomi açısından masraflı olması gibi... Deney ortamında ana beslenme maddesi glikozdu, riboz değildi. Lenski deneyinde bakteriler flagellumu oluşturan genlerin de bir kısmının yitirildiği gösterilmiştir. Doğada besin bulma şanslarını artıran bu yapılar, deney ortamının hazır besin verilen koşullarında işe yaramazlar. Lenski deneyi bizlere sadece evrimsel adaptasyonların muhteşemliğini değil, kullanılmayan yapıların körelmeye mahkum olduğuna dair evrimsel biyoloji yasasını da kanıtlamıştır.

 

Tüm bunlardan görülebileceği gibi, evrimin gerçekleşmesini sağlayan pek çok mekanizması vardır. Ancak en küçük boyuttan, en büyük boyuta kadar canlılara baktığımızda, her yerde evrimin izlerini görmemiz mümkündür. Bu ilginç gen parçaları da bize evrim hakkında önemli bilgiler vermektedir.

 

Umarız faydalı olabilmiştir.

 

Sevgilerimizle.


ÇMB (Evrim Ağacı)


Kaynaklar ve İleri Okuma:

  1. Science
  2. Nature
  3. NCBI
  4. Genetica
  5. Trends In Genetics
  6. Cell
  7. Genetics
  8. Eurekalert

6 Yorum