Abiyogenez - 6: İlkin Dünya Koşullarında Koaservatların Cansızlıktan Evrimi ve Yağların Önemi

Yazdır Abiyogenez - 6: İlkin Dünya Koşullarında Koaservatların Cansızlıktan Evrimi ve Yağların Önemi

Bu yazımızda sizlerle Dünya üzerinde yaşamış, yaşayan ve bildiğimiz kadarıyla yaşayacak olan her canlının atası konumunda olan koaservatlar (ön hücreler: en ilkin hücre formları) hakkında bilgiler verecek ve bunların evrimsel ve biyokimyasal oluşumlarını inceleyeceğiz. Önceki yazılarımızda da açıkladığımız gibi "canlı" dediğimiz varlık formunun oluşabilmesi, bazı biyokimyasal tepkimelerin gerçekleştirilebilmesine ve sürerliliğine bağlıdır. İşte bu yazımızda bu sürerliliğin adım adım nasıl kazanıldığını görecek ve dıştan baktığımızda "cansız" dediğimiz bir varlık formunun nasıl olup da, ne biçimlerden geçerek, hangi noktada "canlı" olduğunu göreceğiz. Bu büyüleyici yolculukta aynı zamanda birçok yan bilgi vererek sizlerin canlılığa bakış açısını daha bilimsel bir temele oturtmaya çalışacağız.

 

Yine önceki yazılarmızdan da hatırlayacaksınız ki canlıları cansızlardan ayıran tek özellik, Dünya üzerindeki ilk maddesel başlangıçtan sonra, yeryüzündeki maddelerin (ve hepsine "cansız" dediğimiz maddelerin) farklı yönlere doğru geçirdikleri kimyasal evrim'dir. Yani Dünya üzerinde var olan maddelerin bir kısmı, bulundukları çevrenin zorunlu kıldığı bir kimyasal evrim sürecinden geçmiş ve çok çeşitli, sayısız maddenin oluşumunu sağlamışlardır. Başlangıçtaki maddelerin bir diğer kısmı ise yine bulundukları çevrenin onlara dikte ettiği şekilde, belli bir yönde birikerek, sayısız deneme-yanılma ve seçilimden geçmiş ve sonunda bizim "canlılık" olarak isimlendirdiğimiz madde formuna ulaşmışlardır. Bu varlık formula ilgili bilmemiz gereken en önemli nokta, daha önce de bahsettiğimiz gibi esasında yapıtaşları bakımından tamamen "cansız" olmaları; ancak organizasyonları ve bu organizasyon dahilinde sahip oldukları aktivitelerden ötürü bizim "canlı" olarak kategorize ediyor olmamızdır. Aslında onlara bizim gözümüzde "canlı" ünvanını veren bu iki özelliği bile (aktivite ve organizasyon) yalnızca cansız moleküller aracılığıyla meydana gelen süreçlerin kazandırdığını unutmayınız. Kısaca "canlılık" bir skala gibidir. Aslında her şey cansızdır; ancak bir noktadan sonra, organizasyon ve aktivite özelliklerine sahip olabilen cansız varlıklara biz "canlı" demekteyiz. Bunun da tek amacı doğada gördüğümüz farklı varlık tiplerini kategorize edebilmektir.

 

Bu madde formları; ya da ilkin canlılar, 4 milyarlık bir değişim süreci sonrasında doğayı ileri düzeyde algılayabilecek bir hayvan türü olan insanı (ve insanla birlikte daha nice canlı formlarını) evrimleştirebilmiştir. İnsan, etrafındaki varlıkları incelemiş ve az önce değindiğimiz kriterlere göre kimini "canlı", kimini "cansız" olarak isimlendirmiştir. Yani buradan da görebileceğiniz gibi aslında doğada canlı ya da cansız diye bir ayrım bulunmamaktadır; sadece farklı yönlere doğru gelişmiş atomlar ve moleküller bütünleri ya da yığınları bulunmaktadır.

 

Şimdi hep birlikte, Evren'de, çoğunlukla yıldızlarda üretilen maddelerin Dünya isimli gezegende yoğunlaşmasından sonra bizim "canlılık" olarak isimlendirdiğimiz varlık formuna doğru geçirdikleri moleküler (kimyasal) evrim'i adım adım ve gözümüzde canlandırarak izleyelim:

 

 

4.5 Milyar Yıl Öncesine Bir Yolculuk...

 

Koaservatlar, "cansız" veya inorganik moleküllerden oluşan, ilk "canlı" (organik moleküllerden oluşan, kompleks) özellikli moleküllerdir. Yani Dünya üzerinde var olan, olmuş ve olacak her canlının atası, ilkin hücreler olarak düşünebileceğimiz koaservatlardır. Bunlar, günümüz hücrelerinden çok daha ilkeldirler ve sadece bir zırh ile zırh içerisinde hapsolmuş moleküllerden ibarettirler. Ancak bu zırh belli oranda molekül transferine izin vermektedir; dolayısıyla ilkin bir madde alışverişine de izin vermektedir. Bunlara tekrar döneceğiz.

 

İlkin koaservatların oluşabilmesi için 600 milyon yıllık bir süreç gerekmiştir. Bu süreç, Dünya'nın oluştuğu 4.5 milyar yıl öncesiyle, ilk canlılığın başladığı 3.9 milyar yıl öncesine kadar sürmüştür. Bu süreçte belki bugünkü canlıların atası olan koaservatlar haricinde pek çok canlılığa temel olma potansiyeli olan başka yapılar da gelişti; ancak bunların hemen hemen hepsi varlıklarını koruyamadılar ve yok oldular (tıpkı birçok insan türünün evrimleşmesi ancak sadece bizim hayatta kalabilmemiz gibi). Ancak bu sayısız denemeden bir grubu, bizim bugün "koaservat" dediklerimiz, yapılarını koruyabilecekleri kadar güçlü ve çevrelerine uygun durumdaydılar. İşte bunlar, Darwin'in deyimiyle "basit bir başlangıçtan, envai çeşitte canlılığa" doğru evrimleşecek ilk basamaktılar. 

 

Koaservatların oluşumunu ve evrimini anlayabilmek için, belki de o dönemin ortamına sizi götürmemizde fayda var. Düşünün ki son derece kaotik ve tehlikeli bir ortamdasınız. Dünya sürekli bir bombardıman altında. Ozon tabakası henüz hiç oluşmadı. Dünya, sadece göktaşları tarafından değil, aynı zamanda Güneş'ten ve uzayın derinliklerinden gelen elektromanyetik ve radyoaktif ışınımların etkisi altında. Dünya üzerinde açık hava ile temas halindeki her şey ama her şey bu bombardımandan nasibini alıyor. Dünya'nın sıcaklığı bugünkü normallerden kat kat yüksek. Güneş gören tarafı sürekli aşırı sıcakken, karanlık kalan tarafı çok soğuk. Dolayısıyla gece ve gündüz sıcaklık farkları akıl almaz derecede yüksek. Üstelik Dünya, günümüzde olduğundan çok daha hızlı dönüyor ve dolayısıyla muhtemelen günlerin uzunlukları 24 saatten daha kısa... Yaklaşık olarak dışarıdan bakan birine şöyle gözüküyor:


 



Aradan milyonlarca ve milyonlarca yıl geçiyor. Hala kıtalara ve kara parçalarına dair pek bir iz yok ve Dünya yavaş yavaş gerek kuyrukluyıldızlardan, gerekse de yerin derinliklerinden gelen suyun buharlaşması ve tekrar yoğunlaşması sonucu sürekli yağmur ve fırtına altında. Üstelik giderek sertleşiyor ve soğuyor. Halen Dünya üzerindeki her nokta bu fırtınalar, elektromanyetik patlamalar ve yoğun radyoaktiviteden de etkilenmekte... Bu olaylardan sonra Dünya'yı yaklaşık olarak şöyle görüyoruz:



 

Dünya'mızın "mükemmel" bir "düzen" içerisinde olduğunu sanan insanların o günleri görmesini gerçekten isterdik. Zira Dünya için kullanılabilecek son sıfatlardan biri "düzenli" idi. İşte bu kaos ortamı içerisinde, birçok olay da süregelmekteydi. Bunların birçoğu yüksek radyoaktivitenin etkisi altında bozunan atomların etkileriydi. Dünya, dediğimiz gibi sürekli "dövülmekteydi". Sürekli yağan yağmurların etkisiyle artık hemen her yer sular altındaydı. Ve henüz tek bir canlılık bile bulunmamaktaydı. Hatta dengeli ve büyük yapılı molekülleri bulmak bile güçtü.


Yine milyonlarca ve milyonlarca yıl geçti... Halen ortam son derece kaotikti, fakat giderek artan miktarda kimyasal tepkime Dünya'nın dört bir yanını doldurmaya başlamıştı. Gezegendeki su miktarı yıllar geçtikçe artıyordu. Bunun sebebi hem kuyrukluyıldızların taşıdığı aşırı yüksek hacimdeki sular, hem de gezegen üzerinde meydana gelen tepkimelerin yan ürünü olarak üretilen su molekülleriydi. Bu durum, Dünya'nın soğumasını hızlandırdı. Ayrıca yer katmanlarında meydana gelen tepkimelerden salınan gazlar, atmosfer tabakasını yavaş yavaş oluşturmaya başlıyordu. İlk etapta, Dünya yeterince yoğun ve yüksek kütleli değilken bu gazları gezegenimiz tutamıyor ve gazlar, sürekli uzaya saçılıyordu. Ancak meteor bombardımanı ve soğumayla gelen yüksek kütle ve yoğunluk, bu gazların tutulabileceği kadar kütleçekimini mümkün kıldı. Bu kütleçekimi, gezegende milyarlarca yıl egemen olacak canlılığı da mümkün kılacaktı. Milyonlarca yıl süren yağışlar ve kaotik ortam sonucunda, Dünya yaklaşık şuna benziyordu:




Görülebileceği gibi halen okyanuslar tam olarak oluşmamıştı; ancak yer katmanları giderek kalınlaşan bir su tabakasıyla örtülmekteydi. Dönem boyunca oluşan volkanlar, bu yükselen su seviyesi altında kalmaya başladılar. Böylece oluşan devasa okyanuslar, gezegeni bir tül gibi örtmeye başladı. Meteor yağmurları halen devam ediyordu ve gezegene kütle taşımayı sürdürüyorlardı. Ayrıca bu süreçte gezegendeki kimyasal çeşitlilik de durmaksızın artış göstermekteydi. Sonunda, aradan milyonlarca yıl geçtikten sonra, Dünya tamamen sulara gömüldü:




Bu süreç daha milyonlarca yıl sürecekti. Ancak kısa sürede, gezegen kendi koşulları dahilinde dengeye ulaşmaya başladı. Atmosfer tabakası giderek kalınlaşıyordu ve bu, radyasyonun etkilerini azaltıyordu. Elbette halen radyasyonun etkisi çok yüksekti; ancak atmosfer koruyucu bir görev görüyordu. Fakat atmosferden çok daha önemli olan koruyucu, okyanuslardı. Radyasyonun etkileri, yüzlerce metreye ulaşan okyanusun sadece yüzeye yakın 200 metrelik kısmına işleyebilmektedir. Dolayısıyla 200 metreden aşağıda radyasyonun zararlı etkileri görülmez. 


Bu, gezegenimizi özel kılacak çok önemli bir adımdır. Öte yandan radyasyonu her zaman yıkıcı olarak da görmemek gerekmektedir. Her ne kadar karmaşık ve çok büyük yapılı bileşikler için genellikle engel teşkil etse de, birçok kimyasal tepkimeyi binlerce ve milyonlarca kat hızlandıracak katalizör etkisi de görebilmektedir. Bu sayede, atmosfer içerisinde daha önceki yazılarımızda ele aldığımız birçok tepkimenin içerisine katılacak kimyasallar üretilebilmektedir ve gezegene resmen "yağmur gibi" yağabilmektedirler. Bu kimyasallar, yeryüzünü kaplayan okyanuslara dökülmekte ve diplere çökelmektedir. Bu da, gezegenin kimyasal çeşitliliğini ve bunların farklı fiziksel koşullarda girdikleri tepkimelerin sayısını aşırı miktarda arttırmaktadır. Tüm bunlar, canlılığın temellerinin atılabilmesi için gerekli ön koşulları sağlamaktadır.

 

Aradan milyonlarca yıl geçtikçe, yer hareketleri de giderek karmaşıklaşmaktadır. Soğuma sonrası gezegenin tabanında oluşan plakalar, magma hareketleri sebebiyle kaymaya ve hareket etmeye başlarlar. Bu sayede, ilk kara parçaları da oluşmaya ve su yüzeyinde belirmeye başlar. Ayrıca halen meteor yağmurları ciddi anlamda devam etmektedir; ancak zaman geçtikçe bu konuda da dinginleşme başlamıştır. Gezegenimiz, o dönemlerde yaklaşık olarak şöyle görülmektedir:




Ancak canlılık için odaklanmamız gereken yer ne karalardır, ne atmosferdir, ne de su yüzeyidir. Çünkü buralar halen yüksek radyasyon ve ısı altındadır, üstelik yeterli ve gerekli fiziksel çeşitliliğe sahip değildirler. Ne var ki gezegenimiz üzerindeki çok özel bazı noktalar, canlılık için büyük öneme sahip olacaktır: okyanus tabanları.


Okyanus tabanlarında, yeryüzü boyunca bulunan çatlak ve yarıklardan sızan magma ve okyanus diplerinde bulunan kimyasalların sayısı ve çeşitliliği, sayısız kimyasal tepkimeyi mümkün kılacak fiziksel ve kimyasal olanakları sunmaktaydı. Magmanın yeryüzüne ulaştığı noktalarda, sıcaklık gradyanları (150-200 derece kadar yüksek sıcaklıklardan, 0 dereceye yakın düşük sıcaklıklara kadar giden bir sıcaklık dağılımı) oluşmaktaydı. Bu gradyanlar sayesinde, çok farklı kimyasal tepkimeler gerçekleşebilmekteydi. Üstelik bu tepkimeleri birbirinden ayırabilecek "odacık" yapıları bulunmaktaydı. Bu jeolojik oluşumlara hidrotermal bacalar adını veriyoruz ve yaklaşık olarak şöyle görünmektedirler (günümüzde de halen çok miktarda bulunmaktadır):




Bu bacaların derinliklerinde çok yüksek sıcaklıklarda meydana gelen tepkimeler meydana gelmekteyken, bacaların dış kısmında, okyanusun derinliklerine doğru azalan sıcaklıklarda tamamen farklı tepkimeler gerçekleşebilmekteydi. Üstelik kimyasal derişim bakımından da farklı odacıklardan oluşan bu bacalar, tabiri yerindeyse tam bir "kimyasal tepkime fabrikası" olarak çalışmaktaydılar. Bunu anlamanın en güzel yolu, aşağıdaki görselleri incelemektir. Göreceğiniz gibi hidrotermal bacaların etrafında yoğun bir kimyasal çeşitlilik bulunmaktadır ve sıcaklık gradyanlarının varlığı, enzimlerin yetersiz olduğu bu dönemlerde bir katalizör etkisi görüyor bu kimyasalların bacaların etrafında birbirinden çok farklı tepkimelere girmesini sağlıyordu.






Üstelik sadece hidrotermal bacalar da değil... Daha önce de belirttiğimiz gibi atmosfer içerisinde meydana gelen birçok tepkimenin ürünleri, okyanuslara yağmayı sürdürüyor ve tabanlarda birikiyordu. Dolayısıyla çok farklı ortamlarda, inanılmaz geniş bir yelpazede kimyasal çeşitlilik oluşuyordu. 


İşte bu fabrikalar içerisinde canlılık ile alakalı veya alakasız çok sayıda tepkime meydana gelmekteydi. Ancak bu tepkimelerden bazıları, canlılığın temellerinin atılmasını mümkün kıldı. Bu tepkimeleri ve örneklerini daha önceki yazılarımızda anlatmıştık. Şimdi, neden okyanus tabanındaki kimyasalların mevcudiyetinden ve o tepkimelerin okyanus tabanlarında tamamen doğal biçimde gerçekleşebilmesi için gerekli koşulların olduğundan bahsettiğimizi anlamışsınızdır diye ümit ediyoruz. Çünkü canlılık, 600 milyon yıl boyunca süren karmaşık süreçlerin ve tepkimelerin sonucunda, bu bacalarda ve etrafında başlamıştır. 


Günümüzde de bu tepkimelerin aynılarını okyanus bacaları etrafında ve atmosferde görmemiz mümkündür. Ne var ki bunlar canlılığı oluşturabilecek basamakları yaklaşık 4 milyar yıl önceki gibi alamamaktadır. Bunun da iki temel sebebi vardır: ilki, ortam koşullarının ve kimyasal derişimlerin o zamankiyle tamamen aynı olmayışıdır. Günümüz koşullarında da muhtemelen canlılık oluşabilir, canlılık bu kadar "hassas" dengelere sahip değildir. Ancak engel olan şey, ikinci nedendir: halihazırda var olan canlılık. Günümüzde aklınıza gelebilecek her ortamı dolduran ve hatta taşıran prokaryotik yaşam (bakteriler ve arkeler) ile mikroskobik ökaryotlar, bu bacaların etrafını ve diğer yaşam alanlarını da işgal etmiştir. Dolayısıyla canlılığa neden olacak adımlar atılıyor olsa bile, 600 milyon yıl gibi uzun dinginlik ve cansızlık dönemleri olmadığından, gerek beslenme amacıyla, gerek üretilen atık maddelerin etkisi altında bu canlılık süreçleri baltalanmakta ve durdurulmaktadır. Sadece 1 litre okyanus suyunda 20.000'den farklı tür ve milyonlarca ve milyarlarca bakteri bireyi olduğu düşünülecek olursa, ne demek istediğimiz anlaşılacaktır: Halihazırda var olan canlılık, sıfırdan başlayan canlılığı ister istemez durdurmaktadır. Fakat ilk oluşum sırasında böyle bir durum olmadığından, canlılık mümkün olabilmiştir.

 

Canlılığın temeli olan ve "ilk canlılar" olarak bilinen koaservatların nasıl bir ortamda var olduklarını anladıysak, şimdi bu evrimsel değişimlerinin belki de en önemli ve olmazsa olmaz adımına gelelim. Hayır, düşündüğünüz gibi genetik materyal en önemli adım olmayabilir. Canlılık için yaptığımız tanımı hatırlayacak olursanız, ilk madde aktivite (dolayısıyla genetik süreçler) değil, organizasyondu. Canlılığın var olabilmesi için öncelikle aktif bir yapıda olan bir izolasyon gerekiyordu. Bu sorunu çözen, yağlar oldu.

 


Canlılığın İlk Adımı: Lipit Çift Katmanlı Zırh

 

Bu yazıya kadar, farklı birçok Hayat Molekülü ve özellikleri üzerinde durduk. Özellikle nükleotitler ve proteinlerin öneminden bahsettik. Ancak koaservatların, yani "ilkin hücrelerin" nasıl oluştuğunu anlayabilmek için günümüzde her bir canlıda mutlaka bulunan "hücre"lerin olmazsa olmaz özelliği olan “hücre zarından” bahsetmemiz gerekir. Çünkü bir "hücre", tanımı gereği bulunduğu ortamdan izole olan; ancak onunla alışveriş halinde bulunabilen, canlılık yapı birimidir. Yani izolasyon, burada anahtar kelimedir. Bu izolasyonu anlayabilmek için de “yağ moleküllerini” incelememiz gerekir:

 

Yağlar (lipitler) canlılık için son derece önemli moleküllerdir. Isı sığalarının (bir cismin sıcaklığını 1 santigrat derece arttırmak için gereken ısı enerjisi miktarıdır) diğer moleküllere göre oldukça yüksek olması, yumuşak/darbe emici olmaları, enerji için kullanılabilmeleri, organları korumaları gibi özellikleri haricinde; moleküler anlamda çok önemli bi kimyasal yapıya sahiptirler: Yağ molekülleri, atomlarının diziliminden ötürü “amfifilik” yapıdadır. Bu ne demektir? Teknik olarak “amfifilik kimyasallar”, kimyasal bileşimi dahilinde hem hidrofobik, hem de hidrofilik yapıda moleküllere sahip olan kimyasallardır.

 

Peki bu iki yeni terim nedir? “Hidrofobik”, bir molekülün fiziksel ve kimyasal yapısından ötürü, sudan “nefret etmesi” demektir. Daha gerçekçi bir anlamıyla, H2O molekülleriyle arasındaki elektriksel etkileşim sonucu (elektron dizilimlerinden ötürü), su ve hidrofobik maddelerin birbirini fiziksel olarak "itmesi"dir. “Hidrofilik” moleküller ise, kimyasal yapılarından ve molekülün içerisindeki atomların elektron diziliminden ötürü, H2O molekülü ile etkileştiklerinde, suyu kendisine çeken, "su seven" maddelerdir. İşte amfifilik bileşikler, uzun yapıda kimyasallardır ve bunların bir ucunda "hidrofobik", bir ucunda ise "hidrofilik" moleküller yer alır. Gelin bunu bir görselle, daha net olarak anlayalım. Bir yağ molekülüne bakalım:

 


 


Bu gördüğünüz bir lipit molekülüdür. Görseldeki "hydrophilic", su seven, "hydrophobic" ise sudan nefret eden kısımları göstermektedir. Bir diğer örnek de aşağıdadır:

 

 

Gördüğünüz gibi yağ dediğimiz yapı uç uca eklenmiş Karbon (C), Hidrojen (H), Oksijen (O) ve Nitrojen (N) atomlarından başka bir şey değildir. Az önce bahsettiğimiz koşullar altında atomlar bir araya gelerek, daha önceki yazılarımızda anlattığımız kimyasal tepkimeler yoluyla yağ moleküllerini oluşturmuşlardır. Bunun olabilirliği günümüzde yüzlerce farklı deneyle ispatlanmıştır. Ancak oluşan bu molekülün hayatımızda olmazsa olmaz bir yeri vardır, birkaç önemli özelliğine yukarıda değinmiştik. Peki, yukarıda anlattığımız “amfifilik özellik”, ne işe yarar? Nasıl olur da bu özellik, lipitlere yani yağlara cansızlıktan canlılığın evrimi konusunda kelimenin tam anlamıyla “hayati” bir özellik katar?

 

Bu sorunun cevabını, evinizde, lipit moleküllerini suyun içine atıp su içerisindeki oluşumları incelediğinizde kendi kendinize dahi verebilirsiniz. Bu “amfifilik yapı”, yağların “iki katmanlı” (bilayer) bir yapı oluşturmalarını sağlarlar. Bu, lipidleri önemli kılan ilk özelliktir. Bir diğer büyük önemleri ise, bu oluşturdukları ikili yapının, fiziksel olarak tüm varlıkların potansiyel enerjilerini minimuma indirme eğilimleri sebebiyle, küresel bir halde oluşmasıdır. Çünkü bir kürenin yüzey alanının hacmine oranı en yüksektir ve bu, canlılık için birinci derece öneme sahiptir. İlk olarak bu iki tabakalı (bilayer) yapıyı bir görelim:

 


 

Burada gördüğünüz yapı, sadece lipitlerden oluşmaktadır, yani yukarıda verdiğimiz yağ moleküllerinden. Burada sarı kırmızı olanlar yağ moleküllerini, maviler ise su ortamını temsil etmektedir. Kısaca görselde gördüğünüz lipit molekülleri ağı, suyun içerisinde bulunmaktadır. Göreceğiniz üzere sudan korkan ve uzak duran (hidrofobik) kısmı, su ile mümkün olduğunca temas etmeyecek şekilde, her zaman iç yüzeylere bakacak şekilde dururlar. Öte yandan suyu seven, yaklaşmak isteyen (hidrofilik) kısmı ise, suya mümkün olduğunca yakın olacak şekilde, her zaman dış yüzeylerde bulunurlar. İşte bu şekilde yağ molekülleri, bu şekilde yan yana dizilirler. Bu yapı, bir “iç kısım” ve bir “dış kısım” oluşturacak şekilde, “çift/iki katmanlı” yapıyı oluşturur.

 

Eğer su içerisine attığınız yağ moleküllerini bir süre daha izlerseniz, göreceğiniz yapı şuna benzeyecektir:

 

 

Bu önemli özellik daha önce de belirttiğimiz gibi tamamen moleküler düzeydeki fizik ile alakalıdır. Yukarıda verdiğimiz yapının küresel hale gelmesi de tamamen Evren içerisinde geçerli olan fizik yasaları ile ilgilidir. Bir cisim, her zaman potansiyel enerjisini en aza düşürmeye çalışır; bu canlı-cansız tüm varlıklar için geçerlidir. Bu yüzden mümkün olduğunca yatay bir pozisyonda uyuruz. Bu yüzden, yerden yüksekte duran cisimler kütleçekim etkisiye yüzeye doğru çekilir ve potansiyel enerjilerini azaltırlar. İşte yine benzer şekilde, bu yüzden üzerinde belirli bir potansiyel taşıyan cisimler mümkünse kıvrılarak küre ya da küreye en yakın geometrik şekle gelirler. Bunun sebebi, potansiyel enerjinin en az küresel geometri üzerinde birikmesidir. İşte aynı sebeple bir yüzey üzerindeki su damlacıkları küresel bir şekil alırlar. Ancak onların küreselliklerini yüzey gerilimi gibi ikincil kuvvetler bozmaktadır. Yağ molekülleri, bir "yüzey"de değil, doğrudan suyun "içerisinde" oldukları için bu kuvvetlerden etkilenmezler. Ancak onları da etkileyen başka birçok diğer kuvvet bulunabilir.

 

Peki bu özelliğin biyolojik anlamı nedir? Cevap oldukça basittir: Bir “zırh” olması.


Koaservat denen ilk hücrelerin (hatta "hücremsiler"in atalarının) ilk olarak evrimleştikleri ortam, kaos halindeki okyanuslar ve bu okyanusların tabanında bulunan, göreceli olarak yüksek sıcaklığa sahip olan volkan bacaları ve etrafıdır. Dünya’nın oluşumundan sonra, milyonlarca yıl boyunca radyasyon, kaos, ısı, ışık, vb. etmenler yukarıda da anlattığımız gibi had safhadadır ve adeta "Dünya'yı dövmektedirler". Bu sebeple, eğer “canlılık” oluşacaksa, bir şekilde “korunması” gerekmektedir. Bu korumanın ilk aşaması, okyanus ile sağlanmıştır. Canlılığın okyanus tabanlarında başlaması çok mantıklıdır, zira okyanus, atmosferin tehlikeli pek çok faktörünü devre dışı bırakmaktadır. Hatta teknik bir bilgi vermemiz gerekirse, uzaydan gelen radyoaktif ve genel olarak günümüz canlılığına zarar verebilecek ışınlar, okyanusun yüzeyinden 200 metreden daha aşağısına inemezler. Şöyle bir istatistik de sunabiliriz: Dünya yüzeyine ulaşan güneş ışınlarının;


  • %73'ü okyanus yüzeyinin 1 santimetre derinine,
  • %44.5'i okyanus yüzeyinin 1 metre derinine,
  • %22.2'si okyanus yüzeyinin 10 metre derinine,
  • %0.53'ü okyanus yüzeyinin 100 metre derinine,
  • %0.0062'si okyanus yüzeyinin 200 metre derinine

ulaşabilmektedir. Pratik olarak 200 metreden sonrasında, radyasyonun yıkıcı etkilerini görememekteyiz.


Ancak bu da yeterli değildir; çünkü kaotik okyanus ortamında moleküllerin bir düzen içerisinde kalmaları gerekir. Daha doğrusu, eğer ki canlılığa sebep olacak dengeli yapılar oluşacaksa, her zaman bir zırh ile dış ortamdan kendilerini izole edebilen yapılar diğerlerine göre avantajlı olacaktır. Göreceğiniz gibi bir doğa yasası olan Evrim, bizim "cansız" olarak isimlendirdiğimiz moleküler düzeyden başlamaktadır (moleküler evrim) ve Darwin'in deyimiyle "basit bir başlangıçtan, sonsuz bir çeşitliliğe" doğru değişimi sağlamaktadır.

 

Canlılığın Evrimi'ne dönecek olursak, işte bu izole edici koruma görevi, çift tabakalı (bilayer) yağ yapısına ve onun aldığı küresel şekle düşmektedir.

 

Görsellerden görebileceğiniz ve evinizde de deneyebileceğiniz gibi bu moleküller oluşurken, içlerinde bir boşluk bırakırlar. Ayrıca oluşum sırasında, fiziksel etkileşimler veya rastlantılar sonucu etraftaki diğer atom ve molekülleri, bu boşluk içerisine hapsederler. Bu boşlukta da, elbette ki dış sıvı (bizim durumumuzda okyanus suyu) bir miktar da olsa bulunmaktadır ancak artık bu su belirli bir hacme hapsedildiğinden ve kaotik dış ortamdan arındırıldığından, bu sıvı artık kürenin “kendine ait sıvısı” olarak kabul edilebilir. Bu noktada, tüm bu anlatılanları destekleyecek bir veri olarak, günümüzdeki tüm canlıların hücre içerisindeki tuzluluk oranının belli farklılıklar dahilinde okyanusların tuzluluk oranıyla aynı olmasını belirtmemiz gerekmektedir. Yani günümüzde hücrelerimiz, 4 milyar yıl kadar önce evrimleşmeye başlayan atalarımızın hücre içi sıvılarını belli başlı farklılıklar haricinde halen muhafaza etmektedirler! Bu, evrimi anlamış bir birey için baş döndürücü bir gerçektir.

 

İşte bu hapsolan bölgedeki atomlar ve moleküller, artık kaotik okyanus ortamı yerine, çok daha güvenli ve sakin bir ortam olan lipit küreciğinin içerisinde tepkimeye girmektedirler. Sınırlı bir alanda tepkimeye girebilecek moleküllerin birbirlerini bulma şansları milyonlarca kat artmaktadır; bu da tepkimelerin hızlarını arttırmaktadır. Üstelik bu küreciklerden belki milyonlarca ve milyarlarcasının okyanus tabanlarındaki farklı bölgelerde oluşması, olası kimyasal tepkimelerin çeşitliliğini de katlayarak arttırmaktadır. Bu küreler içerisinde yeni moleküller oluşmakta (atomların ve diğer moleküllerin kimyasal tepkimeleri sonucu) ve bu moleküller, belirli fiziksel ve kimyasal yapılarından dolayı, belirli sonuçlar doğurmaktadırlar. Bu sonuçlar, bizim bugün dönüp incelediğimizde "moleküllerin görevi" olarak düşündüğümüz sonuçlardır. Örneğin "solunum" dediğimiz olay sırasında Oksijen molekülleri şekerler ile tepkimeye girdikleri için biz Oksijen'in "görevinin" bu olduğunu düşünürüz. Halbuki Oksijen'in herhangi bir "görevi" yoktur. Oksijen, kimyasal yapısından dolayı gerekli şartlar sağlandığı müddetçe belli başlı moleküller ile tepkimeye girmek zorundadır. Bu, Fizik ve Kimya yasaları ile dikte edilir. Yani canlılığın evriminde bazı moleküller yağ molekülleri içerisine hapsedilmiş ve fiziksel/kimyasal özelliklerinden ötürü belli başlı tepkimeleri sürdürmüşlerdir. Zaten günümüzde, canlılık birimi olan hücrelerin içerisinde olan da bu tepkimelerden farklı bir şey değildir. Tek fark, milyarlarca yıldır süren seçilim sonucunda günümüz hücrelerinde çok daha karmaşık tepkimelerin gerçekleşebiliyor olmasıdır. Ancak başlangıçta, sadece çok basit tepkimeler, bu yağ zırhları içerisinde gerçekleşmekteydi.

 

Aşağıda, laboratuvar ortamında üretilen koaservatların yapısını mikroskop altında görmekteyiz:

 


 

Burada gördüğümüz, lipit küresi (mikroskopta 3 boyutlu cisimler, 2 boyutlu gözükür, bu sebeple "çember" gibi gözükmektedir) içerisinde birikmiş moleküller ve atomlardır. Günümüzdeki hücrelere ne kadar da benziyorlar, değil mi? Şimdi bir de modern (günümüzde var olan) bir hayvan hücresine bakalım:

 


 

Farklı ölçeklerde çekilmiş bu iki mikroskobik fotoğraf, evrimin çok güzel bir örneğidir aslında. Gördüğünüz gibi üstteki basit yapıdaki koaservat, kendisinden yaklaşık 2 milyar yıl sonra gelen, günümüzdeki modern hayvanlarda -ve tabii ki dolayısıyla bizde de- bulunan hücrelerin temellerini atmıştır (bilgi: bizler de dahil olmak üzere Hayvanlar Alemi'nde bulunan tüm ökaryotik hücrelerin atası, Dünya’nın oluşumundan 2.6, koaservatların oluşumundan 2 milyar yıl sonra evrimleşmiştir). Hala günümüzdeki hücrelerde, yukarıdaki koaservatların yapısını görmekteyiz.

 

Günümüzde Miller-Urey Deneyi (ve sonrasında yapılan 460'ın üzerinde tekrar deneyi ve deney varyasyonları) sayesinde biliyoruz ki, cansızlık denen varlık formundan, canlılık denen varlık formuna geçmek için tek gereken, doğru şartlarda pek çok deneme-yanılma ve uzun bir zamandır. Bu doğru şartlar da, fiziksel ve kimyasal yapılar tarafından, doğa koşulları ile sağlanır. Bunların günümüzde deneylerle gözlenmesi sonucu, artık biliyoruz ki, Abiyogenez Kuramı, bilimsel gerçekleri ortaya koymaktadır. Bahsettiğimiz Miller-Urey Deneyi (ve sonrasındaki tüm deneyler) sonucu, ilkin Dünya şartlarındaki oranlarda koyulan karbon, hidrojen, azot, vb. moleküllerden, Dünya’nın ilk şartlarındaki gibi şimşekler, radyasyon, vb. (ki ısı reaksiyonları hızlandırır) ortamda bugün “canlı” olarak nitelendirdiğimiz varlıkların yapısındaki moleküller evrimleşebilmektedir. Bunlara daha sonraki yazılarımızda tekrar geleceğiz.

 

Buraya kadar okyanus tabanlarında hücrelerin atası olacak koaservatların nasıl "basit bir başlangıçtan" yola çıktığını net bir şekilde ortaya koyduk. Sadece ilkin koaservatların nasıl bir ortamda, nasıl Dünya koşullarında, ne tip bir adımla, tamamen doğal süreçlerle nasıl var olabildiklerini açıklamaya çalıştık. Bu noktada aklınıza şu sorular geliyor olabilir: Peki bu ilkin yapılar nasıl kendiliğinden oluştu? Nasıl oldu da doğa, cansızlıktan canlılığa giden adımların atılmasını sağladı? Atomlar ve moleküller ne tip formlar almaları gerektiğini nereden "biliyorlardı"? İşte bu soruların cevaplarını bir sonraki yazımızda ele alacağız ve koaservatların bu ilkin yapılarının tam olarak nasıl var olduğunu göreceğiz. Ondan sonraki yazılarımızda, bu lipit tabakası içerisinde ne gibi bir gelişim olduğunu ve bu gelişim sonucunda günümüzdeki hücrelerin nasıl evrimleştiğini adım adım takip etmeye devam edeceğiz.

 

Umarız faydalı olabilmiştir.

 

Saygılarımızla.

 

Yazan: ÇMB (Evrim Ağacı)


---


Abiyogenez Yazı Dizisinin Diğer Yazıları:

Abiyogenez - 1: Kimyasal Evrim, Canlılık ve Cansızlık Tanımları
Abiyogenez - 2: Canlılığın Temelindeki Moleküllere Giriş: 'Hayat Molekülleri'
Abiyogenez - 3: Nükleotitler, Genler, DNA, Kromozom ve Diğer Genetik Yapıların Özellikleri ve İşleyişi
Abiyogenez - 4: İlk DNA Nasıl Oluştu? - Retrovirüsler, "Önce-RNA Hipotezi" ve "RNA Dünyası Kuramı"
Abiyogenez - 5: Ribozim, RNA ve DNA'nın Evrimi
Abiyogenez - 6: İlkin Dünya Koşullarında Koaservatların Cansızlıktan Evrimi ve Yağların Önemi
Abiyogenez - 7: Büyük Hayat Moleküllerinin Oluşumu ve Canlılığın Cansız Temeli
Abiyogenez - 8: Koaservatların Evriminin Kısa ve Dar Bir Özeti
Abiyogenez - 9: Proteinler Kendi Kendilerine Nasıl Oluştular? Proteinin Oluşma Hesapları Üzerine...
Abiyogenez - 10: Bütün Canlıların Ortak Amacı Neden "Hayatta Kalmak" ve "Üremek"tir?

Kaynaklar ve İleri Okuma:

  1. Biogenesis, abiogenesis, biopoesis and all that, Carl Sagan, Origins of Life and Evolution of Biospheres, Volume 6, Number 4 (1975), 577, DOI: 10.1007/BF00928906
  2. Conversion of light energy into chemical one in abiogenesis as a precondition of the origin of life, T.E. Pavloyskaya, T.A. Telegina, Origins of Life and Evolution of Biospheres, Volume 19, Numbers 3-5 (1989), 227-28, DOI: 10.1007/BF02388822
  3. Abiogenesis and photostimulated heterogeneous reactions in the interstellar medium and on primitive earth: Relevance to the genesis of life, A.V. Emeline et al., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 3, Issue 3, 31 January 2003, Pages 203–224
  4. The possibility of nucleotide abiogenic synthesis in conditions of “KOSMOS-2044” satellite space flight, E.A. Kuzicheva, Advances in Space Research, Volume 23, Issue 2, 1999, Pages 393–396
  5. The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith, Mark D. Nussinov, et al., Biosystems, Volume 42, Issues 2–3, 1997, Pages 111–118
  6. Models for protocellular photophosphorylation, Peter R. Bahn, et al., Biosystems, Volume 14, Issue 1, 1981, Pages 3–14
  7. Evolution and self-assembly of protocells, Richard V. Sole, The International Journal of Biochemistry & Cell Biology, Volume 41, Issue 2, February 2009, Pages 274–284
  8. Sufficient conditions for emergent synchronization in protocellmodels, Journal of Theoretical Biology, Volume 254, Issue 4, 21 October 2008, Pages 741–751
  9. The emergence of ribozymes synthesizing membrane components in RNA-based protocells, Wentao Ma, et al., Biosystems, Volume 99, Issue 3, March 2010, Pages 201–209
  10. The “protocell”: A mathematical model of self-maintenance, Helmut Schwegler, et al., Biosystems, Volume 19, Issue 4, 1986, Pages 307–315
  11. Computational studies on conditions of the emergence of autopoietic protocells, Naoaki Ono, Biosystems, Volume 81, Issue 3, September 2005, Pages 223–233
  12. Bifurcation for a free boundary problem modeling a protocell, Hua Zhang, et al., Nonlinear Analysis: Theory, Methods & Applications, Volume 70, Issue 7, 1 April 2009, Pages 2779–2795
  13. Protocell self-reproduction in a spatially extended metabolism–vesicle system, Javier Macia, et al., Journal of Theoretical Biology, Volume 245, Issue 3, 7 April 2007, Pages 400–410
  14. A nonlinear treatment of the protocell model by a boundary layer approximation, Kazuaki Tarumi, et al., Bulletin of Mathematical Biology, Volume 49, Issue 3, 1987, Pages 307–320
  15. A model for the origin of stable protocells in a primitive alkaline ocean, W.D. Snyder, et al., Biosystems, Volume 7, Issue 2, October 1975, Pages 222–229
  16. Facilitated diffusion of amino acids across bimolecular lipid membranes as a model for selective accumulation of amino acids in a primordial protocell, William Stillwell, Biosystems, Volume 8, Issue 3, December 1976, Pages 111–117
  17. The origins of behavior in macromolecules and protocells, Sidney W. Fox, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, Volume 67, Issue 3, 1980, Pages 423–436
  18. Self-organization of the protocell was a forward process, Sidney W. Fox, Journal of Theoretical Biology, Volume 101, Issue 2, 21 March 1983, Pages 321–323
  19. From prebiotic chemistry to cellular metabolism—Thechemicalevolution of metabolism before Darwinian natural selection,Enrique Melendez-Hevia, et al., Journal of Theoretical Biology, Volume 252, Issue 3, 7 June 2008, Pages 505–519
  20. Natural selection in chemical evolution, Chrisantha Fernando, et al., Journal of Theoretical Biology, Volume 247, Issue 1, 7 July 2007, Pages 152–167
  21. Chemical evolution of amino acid induced by soft X-ray with synchrotron radiation, F. Kaneko, et al., Journal of Electron Spectroscopy and Related Phenomena, Volumes 144–147, June 2005, Pages 291–294
  22. Radiation-induced chemicalevolution of biomolecules, Kazumichi Nakagawa, Radiation Physics and Chemistry, Volume 78, Issue 12, December 2009, Pages 1198–1201
  23. Evolution of DNA and RNA as catalysts for chemical reactions, Andres Jaschke, et al., Current Opinion in Chemical Biology, Volume 4, Issue 3, 1 June 2000, Pages 257–262
  24. Anatomical correlates for category-specific naming of living andnon-living things, Carlo Giussani, et al., NeuroImage, Volume 56, Issue 1, 1 May 2011, Pages 323–329
  25. Formamide in non-life/lifetransition, Raffaele Saladino, et al., Physics of Life Reviews, Volume 9, Issue 1, March 2012, Pages 121–123
  26. Major life-history transitions by deterministic directional natural selection, Lars Witting, Journal of Theoretical Biology, Volume 225, Issue 3, 7 December 2003, Pages 389–406
  27. From the primordial soup to the latest universal common ancestor, Mario Vaneechoutte, et al., Research in Microbiology, Volume 160, Issue 7, September 2009, Pages 437–440
  28. How life evolved: Forget the primordial soup, Nick Lane, The New Scientist, Volume 204, Issue 2730, 14 October 2009, Pages 38–42
  29. Modelling the early events of primordial life, Yu. N. Zhuravlev, et al., Ecological Modelling, Volume 212, Issues 3–4, 10 April 2008, Pages 536–544
  30. From a soup or a seed? Pyritic metabolic complexes in the origin of life, Matthew R. Edwards, Trends in Ecology & Evolution, Volume 13, Issue 5, May 1998, Pages 178–181
  31. Self-organization vs. self-ordering events in life-origin models, David L. Abel, Physics of Life Reviews, Volume 3, Issue 4, December 2006, Pages 211–228
  32. The steroid receptor RNA activator is the first functional RNA encoding a protein, S. Chooniedass-Kothari, et al., FEBS Letters, Volume 566, Issues 1–3, 21 May 2004, Pages 43–47
  33. RNA, the first macromolecular catalyst: the ribosome is a ribozyme, Thomas A. Steitz, et al., Trends in Ecology & Evolution, Volume 28, Issue 8, August 2003, Pages 411–418
  34. Did the first virus self-assemble from self-replicating prion proteins and RNA?, Omar Lupi, Medical Hypotheses, Volume 69, Issue 4, 2007, Pages 724–730
  35. Characters of very ancient proteins, Bin Guang-Ma, et al., Biochemical and Biophysical Research Communications, Volume 366, Issue 3, 15 February 2008, Pages 607–611
  36. Simple coacervate of pullulan formed by the addition of poly(ethylene oxide) in an aqueous solution, Hiroyuki Ohno, et al., Polymer, Volume 32, Issue 16, 1991, Pages 3062–3066
  37. Preparation of polyacrylamide derivatives showing thermo-reversible coacervate formation and their potential application to two-phase separation processes, Hiroaki Miyazaki, et al., Polymer, Volume 37, Issue 4, 1996, Pages 681–685
  38. Coacervate complex formation between cationic polyacrylamide and anionic sulfonated kraft lignin, Alois Vanerek, et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 273, Issues 1–3, 1 February 2006, Pages 55–62
  39. Complex coacervates as a foundation for synthetic underwater adhesives, Russell J. Stewart, et al., Advances in Colloid and Interface Science, Volume 167, Issues 1–2, 14 September 2011, Pages 85–93

6 Yorum